A Theorem on the Moment Methods

Djordjevic, A. Sarkar, T. Dept. of Electrical Eng., Univ. of Belgrade, Yugoslavia

© 1987 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract available at: http://ieecexplore.icee.org/xpl/freeabs_all.jsp?arnumber=1144097

This paper appears in: Antennas and Propagation, IEEE Transactions on
Issue Date: Mar 1987

Volume: 35 Issue:3

On page(s): 353 - 355

ISSN: 0018-926X

Digital Object Identifier: 10.1109/TAP.1987.1144097

Date of Current Version: 06 January 2003

Sponsored by: IEEE Antennas and Propagation Society




IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. AP-35, NO. 3, MARCH 1987
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SENIOR MEMBER, IEEE

Abstract—The inner product involved in the moment metheds is
usually an integral, which is evaluated numerically by summing the
integrand at certain discrete points. In connection with this inner product,
a theorem is proved, which states that the overall number of points
involved in the integration must not be smaller than the number of
unknowns involved in the moment method. If these two numbers are
equal, a point-matching solution is obtained, irrespective of whether one
has started with Galerkin’s method or the least squares method. If the
number of points involved in the integration is larger than the number of
the unknowns, a weighted point-matching solution is obtained.

1. INTRODUCTION

The moment methods have been widely used for solving linear
operator equations in many electromagnetic problems [1]. However,
sometimes certain simple facts are overlooked, which might obscure
the true nature of the final solution obtained by the method used, or
even lead to erroneous results or conclusions.
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For example, one can think, one is using the least squares technique
or the Galerkin method, but the resulting solution can be identical to a
point-matching solution because of a careless evaluation of the inner
product. Or one might obtain unstable results due to the same
negligence.

The aim of this communication is to present a simple and almost
obvious theorem on the moment methods, which might be helpful in
avoiding the above problems.

II. FORMULATION OF THE THEOREM

Let us consider the operator equation

Lf=g, @)

where L is a linear operator (which includes certain boundary
conditions), g(X') is a known function (excitation), f = f(Y) is an
unknown function (the solution to be found), and X and Y are points
in multidimensional spaces.

Equation (1) can be solved by applying the moment methods [1].
As the first step of this approach, we have to approximate the
unknown function f by a finite sum:

J=Y af(y), @

i=1

where a; are unknown coefficients to be determined, f;(Y ') are known
expansion functions which form a suitable basis, and in the limit
when n — oo must be able to represent the true solution, f(Y) [2],
[3]. In addition, the expansion in (2) has to satisfy certain boundary
conditions as required by the original equation (1). Now we substitute
(2) into (1), to obtain

Y alfi=g. 3

i=1

The second step in the moment methods is to compute the coefficients
{a;} so that the approximate equation (3) is satisfied in some sense.
To that purpose we have to define an inner product of two arbitrary
functions u(X') and v(X), (u, v), belonging to the range of the
operator L. Next, we take the inner products of (3) with some suitable
weighting functions w;(X), j = 1, * - -, n, which form a functional
basis, belonging to the range of the operator L. Thus we obtain a set
of linear equations in {a;}:

2 ai<wj’ Lfi)’:(wj’ &) Jj=1, -+, n, 4
=

which can be solved for {a;} by using either direct methods (e.g., the
Gaussian elimination, or the LU transform), or by using iterative
methods (e.g., the conjugate-gradient method), which are suitable for
very large systems of equations.

The inner product (&, v} is usually an integral of the product of
functions u(X) and v(X). In very few cases the inner product in (4)
can be evaluated analytically, and in most practical problems it is
evaluated numerically. This involves only samples of the integrand at
certain points. In other words, the numerical integration formulas
used to evaluate the inner product can be written in the general form
as

|, p0yap=3 bipcx, ®)

k=1
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where D is the domain over which the integration is performed, X is
a point in that domain, b, are weighting coefficients, and X, are
points at which the samples of the function p(X') are evaluated. The
function p(X'), in our case, equals (X Jv(X).

If the same integration formula is applied to both inner products of
(4), we have

a; E Wi Xy) b L) x= x,
=1 k=1

(NgE]

=3 wiXobg(X),  j=1,--,n. (6)
k=1
Let us introduce the following matrices:
[F1=1Lfi x=x; ) nxcms Q)
[(W1=1w; (X xm, @®
[B]=diag (b, ***, bm), ®
[C]=[e(X)mx1» (10)
[Al=[ailax1. amn
The system (6) can now be wriiten in a compact form as
[WIBIFI{A]=[WIBIG], (12)

where the superscript ¢ denotes the transpose. Let us also denote

[VI=[WI(B]. (13)
Now we have the following equation instead of (12):
[VIIFY(Al1=[V]IG]. (14

The matrix [V] can be considered as a weighting matrix, which
multiplies the system of linear equations
[F1'[A]=[G]. s)

If m > n, the system (15) is, generally, overdetermined. Note that
equations (15) are, essentially, point-matching equations, which are
obtained by postulating that the approximate equation (3) is satisfied
at points X = X, k = 1, -+, m. The purpose of multiplying the
system (15) by [V] is to obtain a system of n equations in n
unknowns. The solution to (14) can be regarded as a weighted point-
matching solution.

Note that it is not necessary that the same integration formula be
used for each of equations (4). If different formulas are used, then,
instead of (13), the elements of the matrix [ V'] are evaluated as

vjk=wj(A/jk)bjk:j=l; e, n k=1, 00, m, (16)
where Xj; and by, k = 1, -, m, are the coefficients of the
integration formula used for the jth equation.

Let us consider (14). In order that this equation have a unique
solution for [4], the matrix [ V][F]* has to be regular. According to
the Binet-Cauchy theorem [4], the matrix [ V][F]? will be regular if
the condition

a7
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is fulfilled, and if rank [V'] = rank [F] = n. If the condition (17) is
violated, a unique solution does not exist (although a minimum-norm
solution can be found, which might be useful in certain cases [5]).

Thus we have proved the following theorem.

If the integrals representing the inner product in a moment method
solution to a linear operator equation are evaluated numerically, the
overall number of points involved in the integration must not be
smaller than the number of the unknown coefficients.

IV. DISCUSSION

As the first consequence of the above theorem, let us consider the
special case when m = n. If the inverse matrix [ V]! exists, both
sides of (14) can be multiplied by {V]~!, and a n X n system of
linear equations is obtained. This system is, essentially, a system of
point-matching equations, and, hence, the solution to (14) is identical
to the point-matching solution. An example where such a situation
can occur, is the following procedure. Let us adopt the expansion in
(2) to be a piecewise-constant approximation (usually referred to as a
pulse approximation). In that case f;(Y') is zero everywhere except
over a small domain of Y, where it is constant (usually, equal to
unity). If the Galerkin method is used, the weighting functions are w;
= f;. The weighting functions being nonzero only over a small
domain, the inner products in (4) are sometimes evaluated by using
the midpoint rule, i.e., by using only one integration point per inner
product. Obviously, the final result is identical to a point-matching
solution, for which the matching points coincide with the integration
points in the above Galerkin procedure. A similar result can be
obtained if the least squares technique is used. In this case we have w;
= (Lf;)*, where the asterisk denotes the conjugate-complex value. If
the pulse approximation is adopted, we have to evaluate the integrals
representing the inner products over the whole domain of X where
the original equation (1) is to hold, unlike the Galerkin procedure,
where the integration has to be performed only over the domain
where f; is nonzero. However, the overall number of the integration
points must be larger than n, unless we wish to obtain a point-
matching solution (for m = n). Of course, this result is valid
whatever weighting functions are utilized (triangular, piecewise-
sinusoidal, etc.), as long as the inner products are evaluated by using
numerical quadrature formulas.

The need for taking only a few integration points can arise not only
in order to increase the speed of the computations, but also because of
certain problems associated with the kind of the approximation
adopted for the solution, which are not always clearly recognized.
For example, in solving a wire-antenna problem, a piecewise-
constant approximation of the current distribution can be used. (A
good survey of the methods for the analysis of wire antennas is given
in [6].) If the exact kernel is taken, then Lf; has a nonintegrable
singularity at the edge of the domain where f; is nonzero. This
precludes the use of both the Galerkin and the least squares technique,
because the resulting inner products diverge! Yet, if the integration in
evaluation of an inner product is confined to the interior of the
domain where f; is nonzero, acceptable results might be obtained,
although the accuracy of the results can be much worse than with a
point-matching solution (in addition to requiring a much longer CPU
time), and the final result, obviously, is not a Galerkin (or least
squares) solution (because such a solution does not exist). A
singularity, though square integrable, also occurs if a piecewise-
linear approximation (i.e., triangular approximation) is adopted,
which can have an adverse effect especially to a least squares
solution.

Another important fact which follows from (16) is that the
weighting coefficients of the integration formula multiply the values
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of the weighting functions w;. In other words, the weighting
functions are to a certain extent modified by the formulas for the
numerical integration. The only exception is if the repeated midpoint
rule is used on equally sized subdomains, in which case all the
coefficients b, are equal.

If the repeated midpoint rule is used, then the matrix [V] for the
Galerkin and for the least squares solution has special, simple forms.
Thus, for the Galerkin solution we have [V] = AD[f(Y;)], while
for the least squares solution [ V] = AD[F]*, where AD is the size
of subdomains over which the functions f; are nonzero. It is worth
noting that the least squares solution is now equivalent to solving the
overdetermined system (15) in the least squares sense. It is well
known that with such a procedure the resulting system matrix
[FI*[F] is positive definite and therefore the system (14) can be
solved by iterative methods. However, the condition number of that
matrix might become very large [7].

Finally, an analogous theorem can be formulated in connection
with the moment method solution of an integral equation of the
general form

SDf(Y)g(X. Y) dD=h(X)+Af(X), (18)

where A is a parameter. Namely, if the unknown function f is
approximated according to (2), then the overall number of points
involved in the numerical integration must not be smaller than ».

IV. CONCLUSION

The inner product involved in the moment methods is usually an
integral, which is evaluated numerically. Certain precautions have to
be taken in evaluating the inner product in order to obtain a valid
solution. In connection with this a theorem is proved, which states
that the overall number of points involved in the integration must not
be smaller than the number of unknowns involved in the moment
method. If these two numbers are equal, a point-matching solution is
obtained, rather than the desired moment method solution (e.g., a
Galerkin or a least squares solution). If the number of points involved
in the integration is larger than the number of the unknowns, a
weighted point-matching solution is obtained. This conclusion
remains valid whatever weighting functions are utilized, as long as
the inner product is evaluated by using numerical quadrature
formulas.
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