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ABSTRACT Nonuniform helical antennas have many degrees of freedom, which makes the search space
for the optimal design very challenging. The objective of this paper is to systematically analyze nonuni-
form helical antennas with linearly varying geometrical parameters and to provide analytical equations
that approximate the optimal design and the gain of the designed antennas. Using various optimization
algorithms, we made a large database of the optimal nonuniform helical antennas with linearly varying
geometrical parameters. Based on these results, we made analytical equations that approximate the optimal
design and the gain of the designed antennas. These equations allow for a fast design procedure yielding
all necessary parameters needed for the design and fabrication of nonuniform helical antennas that meet
specified characteristics. Special attention is devoted to antenna losses. Antennas designed following the
presented procedure achieve around 2.5 dB higher gain than uniform helical antennas of the same axial
length, while maintaining the bandwidth and axial ratio. As a verification of the proposed design procedure,
a helical antenna with the central operating frequency of 1 GHz was designed, simulated, fabricated, and
measured. The comparison between measured and simulated results confirms the validity of the presented
design procedure.

INDEX TERMS Nonuniform helical antennas, optimization.

I. INTRODUCTION
Since the first report by Kraus in [1], helical antennas have
been widely used due to a simple structure, almost circular
polarization in the axial radiating mode, inherently broad
bandwidth, etc. Practical guidelines are available for design
of uniform helical antennas [1]–[7]. In [7], a reliable design
procedure for uniform helical antennas is presented based on
systematic investigation and comparison with other guide-
lines. On the other hand, such guidelines do not exist for
nonuniform antennas, although various properties of nonuni-
form antennas have been investigated. In [8], it is shown
that the tapered radii at the feeding end and the termination
improve the radiation properties and impedance behavior.
Tapered (or conical) helices allow shaping the gain versus fre-
quency and improve the axial ratio and radiation pattern [9].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wen-Sheng Zhao.

Logarithmic, linear, and exponential variations of the turn
radius are presented in [10], [11], but the highest reported gain
is around 6.5 dB lower than the gain of uniform helical anten-
nas of the same axial length [7]. In [12], nonuniform helical
antennas have a wire pigtail instead of a ground plane, while
both the radii and pitches are optimized for the maximum
gain. The resulting antennas are smaller and handier, without
compromising the gain. In [13], [14], nonlinear pitch profiles
are considered with a constant or exponentially varying turn
radius. In [15], an exponential pitch is considered for widen-
ing the bandwidth. The design of dual-band helical antennas,
working in the normal mode, is presented in [16], [17].

Nonuniform helical antennas have many degrees of
freedom, which makes the optimization very challenging.
Our investigation shows that nonuniform helical antennas
with linearly, exponentially, and piecewise-linearly vary-
ing geometrical parameters achieve practically the same
gain [18]. Furthermore, nonuniform helical antennas with
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piecewise-linear variations of geometrical parameters have
additional degrees of freedom, which sometimes leads to
technically unacceptable results. Hence, the objective of this
paper is to systematically analyze nonuniform helical anten-
nas with linearly varying geometrical parameters, i.e., helical
antennas where the radii and pitch angles of turns change
linearly along the axis of the antenna.

We consider nonuniform helical antennas located above
a ground plane because they achieve about 2.5 dB higher
gain compared to uniform helical antennas of the same axial
length. This is due to the downward radiation (the backward
wave) that is reflected from the ground plane and then catches
up with the upward radiation.

By having practical applications in mind, we consider the
following limits:

a) operating frequencies from 30 MHz to 6 GHz,
b) wire conductivities from 10 MS/m to 100 MS/m,
c) axial antenna lengths from 2 λ to 10 λ, and
d) wire radii from 0.0002 λ to 0.002 λ,

where λ is the wavelength at the operating frequency. These
limits define a hyper rectangle, and the design procedure
should be valid for as large as possible subspace within it.

We created a large database of the optimal nonuniform
helical antennas, involving around 5 million antenna sim-
ulations. The obtained optimal parameters are analytically
approximated, enabling a quick design for given antenna
specification.

In order to verify the proposed design procedure, we have
fabricated and measured a prototype helical antenna.

The authors believe that the quick and reliable design
procedure presented in this paper can be useful in many
applications, as, for example, for the design of reconfigurable
helical antennas that have been proposed in [19]–[25].

The rest of the paper is organized as follows. Section II
defines the typical geometry of the considered helical anten-
nas. Section III presents the optimization setup. Section IV
specifically addresses conductor losses. Section V summa-
rizes the optimal antenna parameters. Section VI details the
design procedure. Section VII summarizes bandwidth, axial
ratio and impedance. Section VIII discusses the influence of
the finite ground plane. Section IX describes the prototype
used for the verification and compares properties of antennas
designed following the proposed procedure with other helical
antennas presented in the literature. Finally, Section X con-
cludes the paper.

II. HELICAL ANTENNAS WITH LINEARLY VARYING
GEOMETRICAL PARAMETERS AND CORRESPONDING
ANTENNA MODELS
The typical geometry of a helical antenna with linearly vary-
ing geometrical parameters is shown in Fig. 1. The antenna
counterbalance can be a wire pigtail [12], which is suitable
for compact antennas, or the antenna can be located above
an infinite ground plane (theoretical case), a finite ground
plane, or reflectors of various shapes. The optimal shape and
dimension of the finite ground plane and the reflector can

FIGURE 1. Sketch of nonuniform helical antenna.

increase the antenna gain [26]–[29]. In this paper, our inves-
tigation is mostly oriented towards the design of the helical
conductor, while the ground is flat and predefined. With that
objective in mind, we first consider helices located above an
infinite, perfectly conducting (PEC) ground plane. Second,
in Section VIII, we examine finite ground planes in order to
complete the design procedure, suitable for production.

The antenna conductor can be a wire, a ribbon, or a
strip [30]. Here, we consider only wire conductors, whose
cross-section is circular and uniform along the antenna.

The geometry of the helical antenna is defined by the turn
radius, r , the pitch, p (or the pitch angle, ϕ), and the overall
axial antenna length, L (Fig. 1). The pitch angle is related to
the turn radius and the pitch as ϕ = arctan (p/2πr). In the
case of a nonuniform helical antenna with linearly varying
geometrical parameters, the pitch angle and the radius are
linear functions of the axial coordinate (z) along the antenna
(i.e., linear distributions are assumed):

r = (r2 − r1)
z
L
+ r1, ϕ = (ϕ2 − ϕ1)

z
L
+ ϕ1, (1)

where r1 is the radius at the bottom of the helix (i.e., for
z = 0), r2 is the radius at the top (z = L), and, similarly,
ϕ1 and ϕ2 are the pitch angles at the bottom and top of the
helix, respectively. In our design, the optimal coefficients r1,
r2, ϕ1, and ϕ2 are functions of the antenna axial length L,
the radius of the wire conductor, rw, and the operating fre-
quency.

Simulations are performed in software WIPL-D [31], and
the results are cross-checked in software AWAS [32]. Exam-
ples of models made in WIPL-D are shown in Fig. 2. These
two programs can analyze only straight-line wire segments.
To that purpose, we approximate a circular turn of radius r
by a regular polygon that has n sides. We assume that the
polygon is inscribed into a circle whose radius is rout =
2r/ (1+ cos (1γ/2)), where 1γ = 2π/n is the central
angle of the polygon. The circle of radius r is midway
between the circumscribed circle and the inscribed circle of
the polygon.

We have found by extensive numerical computations that
for such rout, the gain of the helical antennas practically does
not depend on n for n ≥ 12: the antenna gain deviates
less than 0.1 dB compared to a very large n. Nonetheless,
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FIGURE 2. WIPL-D model of nonuniform helical antenna (a) with
polygonal turns (16 sides) and (b) with square turns.

FIGURE 3. Gain of antennas for various numbers of sides of the
approximating polygon (n) for helical antennas of various axial
lengths (L).

the same low discrepancy was also found for n = 4 (i.e.,
for square turns), as shown in Fig. 3. Note that by controlling
rout the gain of a helix with circular turns can be achieved for
arbitrary n.

Further, a small n is useful to speed-up computations.
Finally, for n = 4 we can use a simple dielectric support for
the wire that has an almost negligible influence on the antenna
characteristics. Hence, in all computations and models pre-
sented in this paper, we use n = 4, knowing that almost the
same gain is practically achieved with perfectly round turns.

In our models, the generator that feeds the antenna is
located at the bottom of a short vertical wire segment,
between the ground plane and the beginning of the first turn
(Fig. 2a).

III. OPTIMIZATION SETUP
We optimized the antenna geometry in order to maximize
the partial gain [33] for the circular polarization in the main
radiating direction.

For various axial antenna lengths and wire radii, we opti-
mized the radii and pitch angles of the first and the last turns.
The radii and pitch angles of other turns were calculated
using (1). We considered the wires to be lossy and the opti-
mization of the antenna geometry was performed for various
wire conductivities, including a PEC. An infinite ground
plane was assumed, made out of a PEC.

Combinations of the optimization variables that corre-
spond to infeasible geometries were rejected during the
optimization.

Comparison of optimization algorithms that we used for
the design of nonuniform helical antennas is presented

in [34]. It is shown that PSO [35], [36], with Nelder-Mead
simplex [37] launched from the best found PSO solution,
leads to the highest probability of finding the best solu-
tion, among all considered optimization strategies. Therefore,
in this paper we have performed a two-step optimization: PSO
with 2000 iterations followed by Nelder-Mead simplex with
200 iterations.

IV. MODELING OF LOSSES DUE TO FINITE CONDUCTIVITY
As stated in Section I, the range of the conductivities was
chosen to cover the frequency range of operation for helical
antennas that are of practical interest, from 10 MS/m (cor-
responding to brass) up to 100 MS/m (slightly better than
silver). We scaled (normalized) the antenna dimensions and
conductivities in order to perform all simulations at 300MHz
(where the wavelength is practically λ = 1m), with the aim
that the design should be applicable to antennas operating
in the frequency range from 30 MHz to 6 GHz. According
to the similitude theorem [38], if the operating frequency
is increased s times, linear geometrical dimensions should
be decreased s times and the wire conductivity should be
increased s times in order to obtain electromagnetic similar-
ity. Hence, the wire conductivities in the scaled model were
taken to be in the range from 0.5 MS/m to 1000 MS/m.
Optimizations were performed for sets of antenna axial
lengths and wire radii within the limits defined in Section I.

Hence, it is convenient to consider the geometrical dimen-
sions divided by the wavelength, and the conductivity mul-
tiplied by the wavelength. This normalization enables easy
translation of the design to the actual wavelength.

The gain of the optimal antennas is shown in Fig. 4 by
solid blue lines, for various antenna axial lengths and wire
radii, as a function of the conductivity (for the scaledmodels).
For comparison, the gain of the optimal uniform antennas is
also shown by horizontal dashed red lines [7]. The conductor
losses strongly affect the gain of the nonuniform antennas
with linearly varying geometrical parameters, unlike the uni-
form helical antennas for which the effect of losses is much
smaller even for the thinnest wires considered in [7].

Solid cyan lines and dots in Fig. 4 are related to the pro-
posed design, which is explained in the following section.

The shape of the optimal nonuniform helical antennas,
whose gain is shown in Fig. 4, depends on the wire con-
ductivity, i.e., on the losses. When the losses are high (i.e.,
when the conductivity is low, far left from the dots in Fig. 4),
the radii and pitch angles of the turns near the feeding point
(at the helix bottom) are larger than the radii and pitch angles
of the turns closer to the helix top, and the antenna gain
is small. A typical geometry of the antenna in this case is
shown in Fig. 5a. When the losses are very high, the gain of
the nonuniform antennas approaches the gain of the uniform
antennas. (The uniform helical antennas can be considered
as a special case of the nonuniform antennas.) Hence, for
the simplicity of the design and manufacturing, the uniform
antennas may be the preferred engineering solution in such
cases.
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FIGURE 4. Computed gain of helical antennas versus normalized conductivity (σλ) for various wire radii and axial antenna lengths (a) L = 2 λ,
(b) L = 3 λ, (c) L = 4 λ, (d) L = 5 λ, (e) L = 7 λ, and (f) L = 10 λ. Solid blue lines show the gain of the optimal nonuniform antennas. Dashed red
lines show the gain of the optimal uniform helical antennas from [7]. Solid cyan lines show the computed gain of antennas designed using (3), (4).
Abscissas of green and pink dots correspond to the normalized conductivities evaluated using (2) and (6), respectively, and ordinates correspond
to the estimated gain evaluated using (5).

As the losses diminish (i.e., as the conductivity increases),
in the region around the dots in Fig. 4, the geometry smoothly
changes to the geometry shown in Fig. 5b, where the radii

and pitch angles increase from the helix bottom towards the
top. For simplicity, we shall refer to such losses as medium
losses.
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FIGURE 5. Typical examples of geometries of the optimal antennas for:
(a) high losses (b) medium losses, and (c) low losses.

With further decrease of losses (i.e., increase of the con-
ductivity, far right from the dots in Fig. 4), including PEC
wires, pitch angles of the turns close to the feeding point
become very small, as shown in Fig. 5c. In this region,
the turns become close to each other (almost touching each
other). In addition, the overall wire length becomes very
long because the number of turns is large, which may be
impractical.

V. OPTIMAL ANTENNA DESIGN
The objective in this section is to provide a simple, yet suf-
ficiently accurate design procedure for nonuniformly-wound
helical antennas. We performed detailed investigation of the
optimal antennas for various conductivities (including PEC
wires), for various antenna lengths, and wire radii. We estab-
lished that it is possible to find a unique design for each
axial length and wire radius that is valid in a wide range of
conductivities, but does not depend on the conductivity. This
reference design is obtained by optimizing the antenna at the
reference conductivity σref defined by

σref λ

= 10(
0.5154 log10(

rw
λ )+3.601) log10

(
L
λ

)
−1.750 log10(

rw
λ )−4.850,

(2)

where L, rw, and λ are in meters, and σref is in MS/m. The
shape of the reference design corresponds to the geometry
shown in Fig. 5b.

The normalized reference conductivity is plotted in Fig. 6
as a function of the normalized axial length and normalized
wire radius. The normalization is with respect to the wave-
length. Fig. 7 shows the design parameters for the reference
design.

For the reference design, we performed two-dimensional
interpolation and approximated the optimal paramet-
ers by:

rm
λ
=

(
Ar
rw
λ
+ Br

)
log10

(
L
λ

)
+

(
Cr log10

( rw
λ

)
+ Dr

)
,

(3)

FIGURE 6. Normalized reference conductivity (σrefλ), as a function of the
normalized antenna axial length (L/λ) and normalized wire radius (rw/λ).

FIGURE 7. Design parameters of the reference design: (a) normalized
radius of the first turn (r1/λ), (b) normalized radius of the last turn (r2/λ),
(c) pitch angle of the first turn (ϕ1), and (d) pitch angle of the last turn
(ϕ2), versus normalized antenna axial length (L/λ).

m = 1, 2, where the coefficients Ar, Br, Cr, and Dr are listed
in Table I, and

ϕ1 = −
(
1.4010 log10

( rw
λ

)
+ 7.2219

)
log10

(
L
λ

)
+

(
1.4980 log10

( rw
λ

)
+ 10.256

)
,

ϕ2 =
(
891.19

rw
λ
+ 7.6254

)
log10

(
L
λ

)
+

(
0.31695 log10

( rw
λ

)
+ 2.7238

)
, (4)

where the pitch angles are in degrees.
The coefficients in (2), (4), and Table I were obtained

by heuristic investigation of various dependences in linear,
logarithmic, and exponential scale, and by including fine-
tuning terms. The investigation was followed by optimization
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TABLE 1. Coefficients in (3).

of the coefficients and verification by simulations of the
designed antennas. Special attention was paid to differences
of the gain of the optimal antennas and the antennas designed
using (3), (4). That discrepancy was maintained as low as
possible.

For the antennas designed using (3), (4) we also provide an
approximate equation that estimates the gain:

gain = 8.385 log10

(
L
λ

)
+ 13.48 −

0.002983 L
λ( rw

λ

)0.8411 √
σ λ

+
26.89(L
λ

)6.763 − 68.71
rw
λ
, (5)

where L, rw, and λ are in meters, σ is in MS/m, and the gain
is in dBi. The coefficients in (5) were obtained following the
described procedure, but two other goals were also targeted.
First, the calculated gain should deviate as little as possi-
ble from the simulated gain of the antennas designed using
parameters calculated from (3) and (4). Second, (5) must
underestimate the gain.

The computed gain of the antennas designed using (3), (4)
is shown in Fig. 4 by solid cyan lines. Obviously, for normal-
ized conductivities in the range σrefλ < σ λ < 1000 MS, i.e.,
from σref λ up to the highest normalized conductivity consid-
ered (1000 MS), the gain of the antennas obtained using the
reference design is only up to 0.25 dB lower than the gain
of the corresponding optimal antennas. Although normalized
conductivities higher than 1000 MS do not correspond to
any design within the hyper rectangle defined in Section I,
we note that if we use the reference design (3), (4) and then
assume a PEC wire, the resulting gain is up to 0.4 dB lower
than the gain of the antenna optimized immediately assuming
a PEC wire.

The reference design (3), (4) can also be used for normal-
ized conductivities σ λ < σrefλ, as shown in Fig. 4. Even
when the normalized conductivity is

σminλ =
(
0.5954− 0.4830 log10 (L/λ)

)
σrefλ, (6)

the gain of the designed antennas (pink dots in Fig. 4) is
in the worst case around 0.5 dB lower than the gain of the
corresponding optimal antennas. Hence, the proposed design
can be used for σminλ < σ λ < 1000MS. In (6) L and λ are
in meters, and σmin and σref are in MS/m. If σminλ < σ λ <

1000MS, the maximal underestimate of the gain evaluated
from (5) is 0.3 dB.

The abscissas of the green and pink dots shown in Fig. 4 are
given by (2) and (6), respectively, whereas the ordinates are
obtained from (5) for σλ = σrefλ and σλ = σminλ. For
the thinnest wire and axial antenna lengths 7 λ and 10 λ,

FIGURE 8. (a) Gain for σ = 58 MS/m and (b) σmin for rw = 0.002 λ and
various axial lengths in the operating frequency range defined in
Section I. For reference, horizontal dashed lines show conductivities of
copper, gold, silver, and aluminum.

σrefλ > 1000MS. Hence in these cases only a pink dot is
shown in Fig. 4.

Fig. 8 shows the gain for various axial lengths in the
operating frequency range from 30MHz to 6 GHz, as defined
in Section I, and σmin calculated from (6). For all antennas,
the wire radius is 0.002 λ and the conductivity is 58 MS/m
(copper), but the results are qualitatively the same for all wire
radii within the limits defined in Section I. The results shown
in Fig. 8 confirm that (5) correctly predicts the gain and
also satisfies the assumption that the gain is underestimated
as long as the wire conductivity is higher than σmin at the
considered frequency.

VI. DESIGN PROCEDURE
In this section, we outline the procedure for a quick design of
nonuniform helical antennas with linearly varying geometri-
cal parameters, based on the conclusions and equations from
previous sections.

A. NOTE ON THE ANTENNA LENGTHS
The gain of the optimal antennas of various lengths (for σ =
σref) is shown in Fig. 9 by discrete points. Eq. (5) accurately
predicts the gain of antennas whose overall axial length is an
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FIGURE 9. Gain for various normalized axial antenna lengths (L/λ) for
normalized conductivity σλ = σrefλ.

integer multiple of half-wavelength, i.e., L = k λ/2, k ∈
{4, . . . , 20}. However, the gain is lower for the optimal
antennas for which this condition is not fulfilled. Therefore,
in order to achieve themaximal gain, the axial antenna lengths
L = k λ/2, k ∈ {4, . . . , 20} are recommended. In particular,
the worst results are observed for the axial antenna lengths
L = (k + i)λ/4, k ∈ {8, . . . , 36} , i ∈ {1, 3}, when, for
shorter antennas, the gain is around 0.4 dB lower than the gain
calculated from (5). For longer antennas, the discrepancies
are smaller. The red solid line in Fig. 9 fits the gain of
the antennas whose axial lengths are L = k λ/2, k ∈
{4, . . . , 20}, whereas the black solid line fits the gain of the
antennas whose axial lengths are L = (k + i)λ/4, k ∈
{8, . . . , 36} , i ∈ {1, 3}.

B. DESIGN ALGORITHM
The design procedure can be formulated as follows. The
targeted antenna gain and wire properties (wire radius and
conductivity) are assumed to be known. The normalized axial
antenna length can be calculated from (5). This step requires
inversion of (5) and numerical calculation. As it is explained
in the previous subsection, (5) predicts well the gain of
the antennas whose axial length is an integer multiple of
half-wavelength. Hence, the normalized axial antenna length
calculated from (5) should first be rounded to the nearest
greater or equal integer multiple of half-wavelength and then
denormalized by multiplication by λ. Next, (6) should be
used to check if this design is valid for the desired wire
conductor and desired axial antenna length. If the normalized
conductivity of the wire conductor is higher than σminλ, the
design parameters can be calculated from (3), (4). Finally,
if it is necessary for a cross-check, the expected gain of the
designed antenna can be calculated from (5).

Note that the same design procedure and equations hold for
both right-hand and left-hand wound helices.

Since the design equations proposed in the previous
section are valid only within a subspace of the hyper rect-
angle defined in Section I, during the design procedure
the practical feasibility of the design should be checked.
For example, at 100 MHz all considered axial antenna
lengths with all considered wire radii fulfill the limit that

FIGURE 10. Relative bandwidths for the antennas located above an
infinite PEC ground plane, versus normalized antenna axial length (L/λ).

the corresponding normalized conductivity σminλ from (6)
is lower than 100 MS. However, at 6 GHz the wire radius
0.001 λ fulfills the limit for σminλ only for the shortest axial
antenna length (L = 2 λ).
Note that if σminλ is too high, the geometrical parameters

calculated from (3), (4) can be used as a good starting point
for further numerical optimization performed by the designer.

VII. BANDWIDTH, AXIAL RATIO, AND IMPEDANCE OF
DESIGNED ANTENNAS
Although the antenna bandwidth and input impedance are
not considered within the optimization procedure, they are
significant for the applications. Therefore, here we provide
values of the bandwidths and input impedances that are inher-
ent to the proposed design. Values of the axial ratios are also
presented.

A. RELATIVE BANDWIDTH
We define the relative bandwidth as BW [%] = 100 (fmax −

fmin)/f , where fmax and fmin stand for frequencies where the
gain is 1 dB (termed as BW1), 2 dB (BW2), or 3 dB (BW3)
lower than the maximal gain. Fig. 10 shows the relative
bandwidths (BW1, BW2, and BW3) for various axial antenna
lengths, wire radii, and wire conductivities σref from (2),
as well as for PEC wires, when the design parameters are
calculated from (3), (4) and the antenna is located above an
infinite PEC ground plane.

B. AXIAL RATIO AND IMPEDANCE
Fig. 11 shows the axial ratios at the operating frequency in
the direction along the antenna axis for various axial antenna
lengths and wire radii, when the design parameters are calcu-
lated from (3), (4) and the antenna is located above an infinite
PEC ground plane. The input impedances of these antennas at
the operating frequency are shown in Fig. 12. The axial ratios
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FIGURE 11. Axial ratios of the antennas located above an infinite PEC
ground plane, versus normalized antenna axial length (L/λ).

FIGURE 12. Real and imaginary parts of input impedances of antennas
located above an infinite PEC ground plane, versus normalized antenna
axial length (L/λ), for various wire radii (rw).

and input impedances at the operating frequency practically
do not depend on the wire conductivity.

VIII. FINITE GROUND PLANE
All the previously presented results were obtained for helical
antennas located above an infinite PEC ground plane. In prac-
tice, the same or even higher gain can be achieved using a
square or a circular ground plane of appropriate dimensions.

Fig. 13 shows typical gain differences, 1 gain, between
the gain of antennas with a square or a circular plane (of
a surface area S) and antennas above an infinite ground
plane (calculated from (5)), for various surface areas of the
plane and various axial antenna lengths. Differences shown
in Fig. 13 are for the reference designs whose wire radius is
0.002 λ. For other wire radii, the differences vary less than
0.2 dB compared to the results shown in Fig. 13. The inset
of Fig. 13 compares gain differences when the ground plane
is a PEC and when its conductivity is σref, for the shortest

FIGURE 13. Differences between the gain of a helical antenna with a
square or a circular ground plane and the gain of the same antenna over
an infinite ground plane calculated from (5), versus the normalized
square root of the surface area of the plane.

and the longest axial lengths. Results affirm that a circular
ground plane is equivalent to a square plane if their surface
areas are equal, whereas the effect of losses in the ground
plane is negligible.

Further numerical experiments have shown that when the
side of the square plane exceeds the dimension sufficient
to achieve the maximal gain, the variations of the relative
bandwidths are

∣∣1BW1, 2, 3
∣∣ < 4%, whereas the variations

of the axial ratio are less than 0.3 dB. The differences between
the input impedances for a square plane, whose side exceeds
the value that corresponds to the maximal gain, and for an
infinite ground plane are in ranges −20 � ≤ Re{1Z } ≤
60 �, −30 � ≤ Im{1Z } ≤ 10 �.

IX. DESIGN VERIFICATION
As a worked-out example, we consider a left-hand wound
helical antenna. The target gain is 16 dBi, the central operat-
ing frequency is 1 GHz (the corresponding free-space wave-
length is λ ≈ 300mm), and the wire parameters are rw =
0.6mm ≈ 0.002 λ and σ = 58MS/m (copper). The axial
antenna length is calculated from (5) and rounded to the first
greater integer multiple of the half-wavelength, L = 2.5 λ.
From (6), σmin is calculated to be 7.6 MS/m; hence (3),
(4) can be applied to this design. From (3), (4), the design
parameters are r1 = 0.1051 λ, r2 = 0.1453 λ, ϕ1 = 4.8438 ◦,
and ϕ2 = 5.6121 ◦. The expected gain, calculated from (5),
is 16.40 dBi, which is slightly higher than the targeted
gain.

136862 VOLUME 7, 2019



J. Dinkić et al.: Design and Optimization of Nonuniform Helical Antennas

FIGURE 14. (a) WIPL-D model of the antenna designed using calculated
parameters and (b) gain of the antenna in a wider frequency range.

A. SIMULATION VERIFICATION
Fig. 14a shows the model of the prototype made using the
calculated design parameters, located above an infinite PEC
ground plane. The antenna gain calculated by WIPL-D at
1 GHz is 16.62 dBi. Fig. 14b compares the gain in a wider
frequency range calculated by WIPL-D and AWAS.

Note that although the design parameters are optimized at
a single frequency, the antenna is reasonably broadband. For
the antenna shown in Fig. 14a, the relative bandwidths are
BW1 = 17.98%, BW2 = 24.61%, and BW3 = 29.24%.
The axial ratio at the central operating frequency in the direc-
tion along the antenna axis is 0.49 dB. The input impedance
at the central operating frequency is (121.81− j 23.01) �.
The relative bandwidths, axial ratio, and input impedance
of the designed antenna agree with the data shown in
Figs. 10, 11, and 12, respectively.

In order to produce the prototype, an infinite PEC ground
plane was replaced by a finite ground plane. As Fig. 13 indi-
cates, a square ground plane of the side length of 2.25 λ is
sufficient to achieve the same gain as with the infinite ground
plane. Furthermore, with the square ground plane of the side
3.33 λ, the gain is 16.93 dBi, which is 0.53 dB higher than
the gain calculated from (5), as indicated by Fig. 13. For the
designed antenna located above the square ground plane of
the side 3.33 λ, the relative bandwidths are BW1 = 16.84%,
BW2 = 24.53%, and BW3 = 31.12%. The axial ratio at the
central operating frequency in the direction along the antenna
axis is 0.37 dB and the input impedance at this frequency is
(130.26− j 31.59) �. The square ground plane of the side
3.33 λ is used for the prototype.
A simple technique for matching the antenna to a 50 �

feeder by soldering a properly shaped thin metallic plate is
described in [7] and it was implemented here.

B. EXPERIMENTAL VERIFICATION
To experimentally verify our design, we fabricated and mea-
sured the antenna introduced as the worked-out example.
Acrylic glass was chosen as the material for the supporting
structure. This low-cost material has sufficiently low losses

FIGURE 15. (a) Model of the supporting structure and (b) assembled
prototype of the antenna.

for the present purpose. The supporting structure consists of
acrylic-glass plates tailored and precisely cut in a way to
properly intersect and form a cross-like structure. Edges of
each plate support corners of the square helix turns. Along the
edges of these plates, at appropriate positions, small grooves
were cut in order to hold the wire at precise places and thus
maintain the calculated pitch angles and turn radii. The model
of the supporting structure made in software Blender [39] is
shown in Fig. 15a. The supporting structure with wound wire
is fixed to an aluminum square plate. The side of the plate is
1 m (i.e., 3.33 λ at 1 GHz). The assembled prototype of the
antenna is shown in Fig. 15b.

Measurements were performed in the anechoic chamber
in Idvorsky laboratories [40]. The gain was measured in the
main radiation direction (i.e., in the axial direction), in the
frequency range from 750 MHz to 1.25 GHz, and it is com-
pared to the simulations in Fig. 16a. Fig. 16b compares the
measured and simulated radiation pattern in the Oxz plane
(with respect to the coordinate system shown in Fig. 14a),
at the central operating frequency. Due to the imperfect wire
bendings at the corners of the turns, the total wire length
of the fabricated antenna is around 2.5% longer than in the
model. Further, in the model, the antenna conductor is placed
in a vacuum, whereas in case of the fabricated antenna the
conductor is wound on the dielectric supporting structure,
which also slightly affects the antenna properties. Hence,
in order to take into account both the effect of imperfect
wire bendings at the corners of the turns and the influence of
the dielectric, in Fig. 16 we compare measured results with
simulated results for the model with the turn radii for 5%
larger than the radii calculated from (3). The results shown
in Fig. 16 confirm the presented design procedure.

C. COMPARISON WITH OTHER HELICAL ANTENNAS
A detailed investigation and comparison of the uniform heli-
cal antennas presented in the literature is given in [7]. As it
is shown there, the narrow-band (NB) design achieves the
highest gain compared to the other designs presented in
the literature, except the gain calculated using the equa-
tion from [1], which is considered to overestimate the gain.
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FIGURE 16. Gain of the fabricated antenna (a) in a wider frequency range
in the main radiation direction and (b) radiation pattern in Oxz plane at
the central operating frequency.

TABLE 2. Comparison of uniform antennas [7] and presented nonuniform
antennas for L = 2 λ.

For these reasons, we believe that the most important com-
parison of the design presented here is with the NB design
from [7].

Tables II–IV compare the gain, bandwidths, and axial ratio
of the uniform (NB) antennas from [7] with the nonuni-
form antennas designed following the presented design pro-
cedure at the operating frequency (300 MHz). The results
are compared for two different wire conductivities (σref and
1000 MS/m). In all cases, the same wire radius (rw =
0.0015 λ) is utilized. The nonuniform antennas achieve more
than 2 dB higher gain in the case of low losses. The influ-
ence of increased losses is smaller on the gain of uniform
antennas than on the gain of nonuniform antennas. However,
even for higher losses, the nonuniform antennas still achieve
a higher gain than the uniform antennas. The bandwidths
of the nonuniform helical antennas are wider in case of
longer antennas, whereas for shorter antennas the situation
is reversed. For all antenna lengths the axial ratio is better in
the case of nonuniform helical antennas.

In [9], various types of tapered helical antennas are con-
sidered, including the uniform helix. Table V compares the
results presented in [9] with the performances of helical
antennas designed following the presented design procedure.
Since in [9] the radius and conductivity of the helix conductor
was not indicated, we utilize rw = 0.002 λ and σ = 58MS/m
for the antennas designed following the presented design
procedure. Instead of the cavity used in [9], we utilize an
infinite perfectly conducting ground plane. (Fig. 13 gives
information on the influence of the finite ground plane on the
gain.)

TABLE 3. Comparison of uniform antennas [7] and presented nonuniform
antennas for L = 4.5 λ.

TABLE 4. Comparison of uniform antennas [7] and presented nonuniform
antennas for L = 8.6 λ.

TABLE 5. Comparison of antennas from [9] and presented nonuniform
antennas.

From Table V it can be noticed that, for all considered
antennas, the gain of the antennas designed following the
presented design procedure is for more than 2 dB higher than
the gain of the antennas presented in [9]. The goal in [9] was
to demonstrate the abilities of nonuniform helical antennas to
broaden the bandwidth in comparison with uniform antennas.
Hence, the bandwidths of continuously tapered and quasi-
tapered helices are wider than the bandwidths of the helices
designed following our design procedure, but the gain of our
antennas is much higher, as can be expected. The axial ratio
in all cases is comparable.

In [12] nonuniformly-wound helical antennas with a wire
pigtail counterbalance are reported. The gain of the antennas
presented in [12] is compared with the gain of our design,
for the axial lengths and wire radii for which our design is
applicable. Results of that comparison are listed in Table VI.
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TABLE 6. Comparison of antennas from [12] and presented nonuniform
antennas.

TABLE 7. Comparison of antennas from [15] and presented nonuniform
antennas.

For the antennas designed following our design procedure
we assumed the wire conductivity to be 58MS/m and that the
antennas are located above an infinite perfectly conducting
ground plane. (Fig. 13 gives information about the influence
of the finite ground plane on the gain.)

In [15], helical antennas with exponentially varying spac-
ing between the turns are presented and compared with the
uniform helical antennas. Table VII compares the presented
design with the designs from [15] for the same axial antenna
length, wire conductivity, ground plane shape, and dimen-
sions. For antennas designed by our procedure the wire radius
is 0.002 λ.
The gain of the antennas designed following the presented

design procedure is for more than 4.5 dB higher than the gain
of the antennas from [15].

Further, in [41] the design of a uniform helical antenna
at 5.25 GHz is presented. The simulated gain is 12.58 dBi.
For the same axial length and conductor radius, the gain
of the nonuniform helical antenna designed following our
procedure is 16.2 dBi if the antenna is located above a ground
plane of appropriate dimensions.

X. CONCLUSION
The paper presents a rapid and reliable procedure for the
design of nonuniform helical antennas with linearly vary-
ing geometrical parameters. Using numerical optimization,
we made a large database of the optimal antennas. Based on
these results, we proposed analytical equations for the design
of antennas with desired characteristics, which require only
a few simple steps. Properties of antennas designed using

the present design equations were discussed. This design
procedure was verified by simulations and experiments.

The large database formed throughout the research pre-
sented in this paper can be further utilized to train machine
learning algorithms, for the design of nonuniform helical
antennas. This investigation will be the scope of our future
work.
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