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A Note on the Modeling of Transmission-Line Losses 

Antonije R. Djordjević, Alenka G. Zajić, Dejan V. Tošić, and Truc Hoang 

 Abstract—We consider uniform lossy transmission lines characterized by their primary 

parameters. Exact and approximate formulas for the characteristic impedance and propagation 

coefficient are reviewed and discussed for low-loss lines. Approximating the characteristic impedance by 

its real part can lead to erroneous results for the input impedance of short-circuited and open-circuited 

stubs. This problem is analytically demonstrated on electrically short stubs. Results obtained using the 

exact and approximate expressions are compared with numerical solutions that are generated by various 

circuit simulation software. 

I. INTRODUCTION 

In this paper, we consider the classical problem of transmission-line modeling by circuit-theory equations. This 

modeling is important because it often represents the first cut in the analysis and design of microwave circuits, 

and because it is sufficiently accurate for lower microwave frequencies. Electromagnetic simulation can be used 

for more accurate design to include fringe fields, parasitics, radiation, etc.  

We assume the line to be uniform and in the sinusoidal regime at the angular frequency ω . The line is 

described by its primary parameters: L′ – per-unit-length inductance, C′ – per-unit-length capacitance, R′ – per-

unit-length resistance, and G′ – per-unit-length conductance. The line length is D.  

From the telegraphers' equations, one can derive the exact expressions for the characteristic impedance of the 

line, 
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and the propagation coefficient, 

 ( )( )'j''j' CGLR ω+ω+=γ . (2) 

 For most microwave transmission lines, conductor and dielectric losses are relatively low. Hence, we may 

assume 

 '' LR ω<< , (3) 

 '' CG ω<< . (4) 

Based on the above assumptions, the characteristic impedance is often approximated as purely real and given 

by 
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This expression is commonly used in practice.  

The propagation coefficient is usually properly taken to be complex, i.e., β+α=γ j , where α is the 

attenuation coefficient and β is the phase coefficient. After expanding in a series, the propagation coefficient can 

be approximately evaluated as 
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where 
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and 

 ''CLω=β . (8) 

The attenuation coefficient can be represented as the sum of two terms, dc α+α=α , where the first term, 
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is due to the conductor losses, and the second term, 
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is due to the dielectric losses. 

The aim of this paper is to call attention to a problem that can be encountered when previous approximations 

are used in the analysis of short-circuited and open-circuited transmission-line sections (stubs). The 

approximation (5) leads to erroneous evaluation of transmission-line losses, which ultimately affect analysis 

results for the whole microwave network.  

In Section II, this problem is analytically demonstrated on electrically short stubs. These results are 

numerically verified in Section III. In that section, we compare results obtained using the exact and approximate 

expressions from Sections I and II with numerical solutions generated by various circuit simulation software [1-

6].  

II. SHORT-LENGTH LOSSY STUBS 

Let us consider an electrically short section of a uniform lossy transmission line. We shall analyze the input 

impedance of a short-circuited section and of an open-circuited section using the exact and approximate 

expressions for the characteristic impedance and the propagation coefficient. 

A. Short-circuited stub 

The exact expression for the input impedance of a short-circuited line is 

 )tanh(cins DZZ γ= . (11) 

For a short line, 1<<γD , so we can approximate the hyperbolic tangent in (11) by 

 DD γ≈γ )tanh( . (12) 

Hence, DZZ γ≈ cins . Using the exact expressions (1) and (2), we further obtain 

 ( )DLRZ 'j'ins ω+≈ , (13) 

where DR'  is the total (series) resistance of the line, and DL'  is the total inductance. The result given by (13) is 

obvious for a microwave practitioner: the line approximately acts like an inductor whose quality factor is 
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If we use (5) and (6) instead of (1) and (2), we obtain in a similar way from (11): 
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In comparison with (13), equation (14) yields the same result for the imaginary part, but a different expression 

for the real part of the input impedance. Hence, the quality factors obtained from (13) and (14) are also different. 

For example, if the conductor losses dominate (i.e., if dc α>>α ), (14) yields a two times smaller real part than 

(13), and, hence, a two times higher quality factor. If the dielectric losses dominate (i.e., if dc α<<α ), (14) gives 

overestimated losses, i.e., an underestimated quality factor. We shall demonstrate in Section III that equation (13) 

gives numerical results similar to (11). The different result obtained from (14) is primarily due to using (5) 

instead of (1). 

B. Open-circuited stub 

Now, let us consider a dual situation – an open-circuited transmission line. The exact input admittance to the line 

is 

 )tanh(cino DYY γ= , (15) 

where cc 1 ZY =  is the characteristic admittance of the line. Using (1), (2), and (12), we obtain 

 ( )DCGY 'j'ino ω+≈ , (16) 

where DG'  is the total (parallel) conductance of the line, and DC'  is the total capacitance. This line acts like a 

capacitor whose quality factor is 
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If we use (5) and (6) instead of (1) and (2), we obtain 
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In comparison with (16), equation (17) yields the same imaginary part, but a different real part of the input 

admittance. If the conductor losses on the transmission line dominate (i.e., if α αc d>> ), (17) gives 

overestimated losses. If the dielectric losses dominate (i.e., if α αc d<< ), (17) yields a two times better quality 

factor than (16). 

III. NUMERICAL EXAMPLE 

To investigate and illustrate the sources of discrepancy among various formulas of Section II, we consider a 

numerical example. It is a transmission line with the following primary parameters: 

• mnH8.228' =L , 

• mpF54.91' =C , 

• m640.7' Ω=R , 

• mS2.485' µ=G , 

which are realistic data for a microstrip line at 1 GHz [7]. The line is assumed to be short-circuited and its length 

to be mm10=D . 

As summarized in Table 1 (Case #1), the characteristic impedance of the line, according to (1), is 

( ) Ω−= j0.111899.49cZ . The propagation coefficient, according to (2), is ( ) -1mj28.755088537.0 +=γ . From 

γ, one can calculate the attenuation coefficient, mdB7690.0=α  (most of which is due to the conductor losses, 

because mdB6636.0c =α ) and evaluate the effective relative permittivity, 882.1re =ε . Hence, the line length 

(D) is much shorter than the wavelength ( mm218=λ ). 

Three approximations are introduced in Sections I and II, given by equations (5), (6), and (12), respectively. 

Each one can be used alone or in a combination with other approximations. To estimate the influence on the 

input impedance of the line, we introduce one approximation at a time. The results are given as Cases #2-4 in 

Table 1.  

The approximation of the propagation coefficient, (6), has a negligible influence.  
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The approximation of the hyperbolic tangent, (13), introduces an error of about -6% for the real part of the 

input impedance and -3% for the imaginary part. This error diminishes for shorter line lengths.  

The approximation of the characteristic impedance, (5), is critical. The resulting characteristic impedance is 

real and practically identical to the real part of (1). The difference is only in the small imaginary part, whose 

magnitude is about 0.2% of the real part. Although small, this number has the major impact on the real part of the 

input impedance. The resulting error is -41%, as predicted in Section II. In contrast, the approximation (5) has 

practically no influence on the imaginary part of the input impedance. 

The combination of all three approximations, given by (14), gives practically the same imaginary part as (13). 

The real part given by (14) is significantly smaller, which, again, is attributed to using (5) instead of (1). 

Table 1. Input impedance of a short-circuited transmission line. 

Case Formulas used ][c ΩZ   ]m[ -1γ  ][ins ΩZ  

#1 Exact cZ , γ, tanh 

(1), (2), (11) 

49.99476 - j0.11176 0.0885368 + j28.7551 0.081187 + j14.78569 

#2 Exact cZ , γ 

Approximate tanh 

(13) 

49.99476 - j0.11176 0.0885368 + j28.7551 0.076400 + j14.37593 

#3 Exact cZ , tanh 

Approximate γ 

(1), (6), (11) 

49.99476 - j0.11176 0.0885370 + j28.7550 0.081188 + j14.78566 

#4 Exact γ, tanh 

Approximate cZ  

(5), (2), (11) 

49.9945 0.0885368 + j28.7551 0.048135 + j14.78574 

#5 Approximate cZ , 

γ, tanh 

(14) 

49.994537 0.0885370 + j28.7550 0.044264 + j14.37593 

#6 Touchstone model   0.093660 + j14.78565 

 

All microwave circuit simulators and many "low-frequency" simulators implement a transmission line as the 

circuit element. Usually, there are two models of the line. One is a lossless line, defined by its characteristic 

impedance and electrical length. The other model, referred to as the physical model, is usually given by the 

characteristic impedance that is assumed to be real, the attenuation coefficient, and the electrical length. We are 

interested here only in lossy lines. According to the results shown in Table 1, the data that define the physical 

model are insufficient to produce accurate results for the real part of the input impedance. This insufficiency has 

been often overlooked by both researchers and microwave software developers. 

We have evaluated several available software packages. The programs of References [1-3] give identical 

results for the physical model of the transmission line as Case #4 in Table 1, i.e., they underestimate the real part 

of the input impedance.  

The program of Reference [4] has a model that tries to bypass the problem of the real characteristic 

impedance. The model assumes all losses to be due to the conductor losses, i.e., it takes 0'=G . It evaluates R' 

from the given attenuation coefficient and internally computes the characteristic impedance as a complex 

number. The resulting real part of the input impedance is larger than the exact one, as Case #6 in Table 1. The 

result would be correct only when the dielectric losses are negligibly small.  

In certain programs, the input data for defining a lossy transmission line are all four primary parameters and 

the line length. This data set completely describes the line. One example is the program of Reference [5] that uses 

an exact formulation for the characteristic impedance and gives the same result as Case #1 in Table 1.  

In the program of Reference [6], the standard lossy transmission-line model T-RLGC uses all four primary 

parameters. However, the result is the same as Case #4 in Table 1. On the other hand, the ABM module in this 
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program, from the Library of transmission line models and subcircuits (tline.lib), gives correct results, as Case #1 

in Table 1. 

The same problem as investigated for the physical model of the transmission line was also discovered in other 

models in some programs (e.g., the coupled microstrip lines in [4]), but we shall not elaborate this further. 

Figure 1 presents the relative error in the real part of the input impedance introduced by using (5) instead of 

(1) in (11), as a function of the line length. The error in the imaginary part is negligibly small, except in the 

immediate vicinity of resonant lengths. The error in the real part has a maximum for electrically short lines and it 

vanishes at resonant lengths. The envelope of this error diminishes with increasing the line length. A more 

detailed mathematical analysis of this error is beyond the scope of the paper. 

For the same transmission line as above, the input admittance is calculated for an open-circuited stub. 

Equations (1), (2), and (15) give the exact input admittance, ( ) Sj5915.60343.6ino µ+=Y . Equations (16) and 

(17) give the input admittances ( ) Sj5751.68520.4ino µ+=Y , and ( ) Sj5751.67093.17ino µ+=Y , respectively. 

Equations (5), (2), and (15) yield ( ) Sj5915.62580.19ino µ+=Y . The last result, with a highly overestimated real 

part, is also obtained by the programs [1-3]. Touchstone yields ( ) Sj5915.60441.1ino µ+=Y . The real part is 

highly underestimated because the loss is associated only with conductors, whereas the major losses for this short 

line come from the dielectric (whose quality factor is 1185C =Q ). 

IV. CONCLUSION 

We consider uniform lossy transmission lines characterized by the primary (per-unit-length) parameters at a 

given frequency. The lines are assumed to operate in the sinusoidal regime. We present exact and approximate 

formulas for the characteristic impedance and the propagation coefficient of low-loss lines. The usual 

approximation of the complex characteristic impedance by its real part introduces a significant error in the real 

part of the input impedance of transmission-line stubs. Consequently, the quality factor of the stubs can be 

overestimated or underestimated. This error is particularly pronounced for electrically short lines. A similar 

problem occurs in the time-domain analysis of lossy transmission lines of arbitrary lengths. The remedy is to 

adequately take into account all four primary parameters of the line. 
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Figure 1. The relative error in the real part of the input impedance ( δ ) introduced by using (5) instead of (1) 

in (11), as a function of the normalized line length (D/λ). 


