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1. INTRODUCTION

We consider an array of M infinitely long cylindrical conductors of
arbitrary cross sections (Figure 1). Each conductor is assumed to be
made of a linear homogeneous nonmagnetic material of a finite con-
ductivity (σ1, . . . , σM ) . A time-harmonic regime is assumed, of an
angular frequency ω . For each conductor the condition σ � ωεc is
assumed to be fulfilled (where εc is the conductor permittivity), so
that each conductor can be characterized by its complex permittiv-
ity εe = −jσ/ω . The conductors are placed in a linear homogeneous
dielectric, of parameters ε and µ . A cartesian coordinate system is
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associated with the array, where the z -axis is parallel to the conduc-
tor axis. The array is assumed to be excited in such a way that there
are only z -directed currents in the conductors, the density of which
does not depend on z . This amounts to considering a two-dimensional
system, with a magnetic field transverse to the z -axis (TM field).

The array under consideration can represent a model for various
structures used in the engineering practice. Examples are a.c. power
busses (where the proximity, edge and even skin effects can substan-
tially affect conductor losses [Popović and Popović, 1972]), multicon-
ductor transmission lines in communications and computers (where the
model can be used to evaluate the frequency-dependent resistance and
inductance matrices [Djordjević et al., 1985, Djordjević and Sarkar,
1986]), EMI/EMC shields in the form of screens or enclosures [Djord-
jević and Sarkar, 1991], as well as screens made of long parallel wires.

Two techniques for the analysis of the above array are presented
and compared. The first technique is based on evaluating the current
distribution within the conductors (it will be referred to as the volume-
current formulation), and it has originally been used by power engi-
neers, for low-frequency applications. The second technique is based
on the concept of equivalent surface currents (and it will be referred to
as the surface-current formulation), and it has been applied in various
forms in solutions of high-frequency problems. These two techniques
are presented in Sections 2 and 3, respectively. In Section 4 some spe-
cific aspects of applications of the two techniques to the analysis of
transmission lines are elaborated. In Section 5 are given numerical ex-
amples which demonstrate some applications of the two methods and
serve to compare these methods in various frequency ranges.

2. VOLUME-CURRENT FORMULATION

This technique has been applied in the solution of power-engineering
problems of analyzing various buses [Popović and Popović, 1972]. It is
based on formulating an integral equation for the distribution of the
current within the conductor volume, and solving this equation using
the method of moments [Harrington, 1993].

We assume that the excitation of the array of Figure 1 is modeled
by an impressed (known) axial electric field ( �Ei = Eizûz , where ûz
is the unit vector of the z -direction). This field can vary from one
conductor to another, as well as across the cross section of a conductor,
but it is assumed that there are no variations along the z -axis. In
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Figure 1. Sketch of an array of cylindrical conductors.

many practical cases this field is uniform over the cross section of
each conductor, as shown in Section 4. As the response to this field,
axial volume currents are induced in the conductors, and their density
(�J = Jzûz) depends only on the transverse coordinates, and not on
z (two-dimensional case). At each point of a conductor, the current
density is related to the electric field by

�J = σ(�E + �Ei), (1)

where �E is the electric field produced by the conductor currents (and,
generally, charges). This electric field can be expressed in terms of the
magnetic vector-potential (�A) and the electric scalar-potential (V ) as

�E = −jω�A− grad V. (2)

The magnetic vector-potential is related to the currents, and the elec-
tric scalar-potential to the charges. The densities of the volume current
(�J) and charges (ρ) are related by the continuity equation,

div �J = −jωρ. (3)
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However, in our case ∂Jz/∂z = 0 , and ρ = 0 . Hence, there can be
no charges associated with our current, and grad V = 0 , so that (2)
reduces to

�E = −jω�A. (4)

Assuming the medium to be nonmagnetic everywhere (i.e., µ =
µ0 ), and neglecting retardation in the dielectric in which the array of
conductors is located (which is a valid assumption in power-engineering
problems), the magnetic vector-potential is related to the currents, in
the three-dimensional case, as

�A =
µ0

4π

∫
v

�Jdv

r
, (5)

where r is the distance between the source and the field points, and
v is the volume in which the currents exist. Performing an integra-
tion over the z -coordinate results in the following expression for the
magnetic vector-potential for the two-dimensional case

�A = −µ0

2π

∫
S

�J log(r)dS, (6)

where S denotes the cross section of all conductors, but this equation
is subject to the condition that the total current of the array is zero,∫

S

�J · d�S = 0. (7)

Substituting (6) into (4), and (4) into (1) results in an integral equation
for the volume-current density �J ,

−jω µ0

2π

∫
S

�J log(r)dS +
�J

σ
= �Ei, (8)

which is valid for any point within any conductor of the array. Both
sides of equation (8) should be projected on the z -axis, reducing to

−jω µ0

2π

∫
S
Jz(x′, y′) log(r)dx′dy′ +

Jz(x, y)
σ

= Eiz(x, y), (9)

which is an integral equation for Jz(x, y) , where x and y are trans-
verse coordinates. For convenience, the coordinates of the source point
are denoted by primes, so that r =

√
(x− x′)2 + (y − y′)2 .
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Equation (9) can be solved numerically, using the method of mo-
ments [Harrington, 1993]. We adopt here the pulse approximation for
the current distribution, which is the simplest choice. (More sophisti-
cated approximations can involve entire-domain expansion functions,
or even inclusion of skin-effect terms.) To that purpose, we divide the
cross section of each conductor in a number of rectangular cells, and
assume the current to be uniformly distributed over each cell. This
amounts to defining a set of expansion functions,

fi(x, y) =
{

1 on rectangle #i
0 elsewhere

, (10)

and taking

Jz(x, y) =
n∑
i=1

Jifi(x, y), (11)

where n is the total number of rectangles, and Ji are constants to be
solved for. When (11) is substituted into (9), we obtain

−jω µ0

2π

n∑
i=1

Ji

∫
Si

log(r)dx′dy′ +
1
σj

Jj = Eizj , j = 1, . . . , n, (12)

where Si denotes the surface of the rectangle # i , and σi the con-
ductivity at that rectangle. The simplest choice of weighting functions
are impulses, which amounts to the point-matching method, which we
adopt here. The matching points are chosen at centroids of the n
rectangles. The resulting integrals in equation (12) can be solved ana-
lytically, as given in Appendix. After the system of linear equations in
Ji is solved, the total current of each conductor can be evaluated as

Im =
∑
i

JiSi, (13)

where the summation is taken over all pulses for that conductor.
The impressed electric field in the above equations cannot be ar-

bitrarily specified for all conductors, because the condition (7) must
hold. One way to bypass this problem is to subtract the last point-
matching equation from all the previous equations (in a similar way as
in [Djordjević et al., 1989]), and replace the last equation by

n∑
i=1

JiSi = 0. (14)
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Another possibility for achieving the same goal is presented in Sec-
tion 4.

3. SURFACE-CURRENT FORMULATION

The basic idea of this method is to use equivalence theorems [Harring-
ton, 1961] to break the system under considerations into a number of
subsystems, each of them being filled with a homogeneous medium. In
this formulation we can include ferromagnetic properties of conductors
by taking conductor permittivities to be µ1, . . . , µM .

Illustrated in Figure 2 is the basic application of the equivalence
theorems. Shown in Figure 2a is the cross section of the conductor
array of Figure 1. Figure 2b shows the equivalent system for the exte-
rior region (the dielectric in which the conductors are embedded), and
Figure 2c shown the equivalent system for the interior region of one
conductor. (Similar systems should be simultaneously observed for all
other conductors.) In each of the equivalent systems, a layer of sur-
face electric currents (of density �Js ), and a layer of surface magnetic
currents (of density �Ms ) are placed on the surfaces of discontinuity
(conductor surfaces), with the objective to produce a zero total field in
a region. The medium in the region with a zero field can be replaced
by any other medium, which enables us to imagine that the medium
in an equivalent system is homogeneous everywhere. The homogeniza-
tion of the medium is necessary for using the simplest form of Green’s
functions for the potentials, as given below.

In order to achieve the equivalence in Figure 2, the densities of the
equivalent surface currents must obey the following relations

�Js = n̂× �H, (15)
�Ms = −n̂× �E, (16)

where �E and �H are the fields at the surface which existed there before
the substitution, and n̂ is the unit normal on the interface directed
towards the region with nonzero field. The surface currents in the
systems of Figures 2b and 2c are equal in magnitude, but opposite in
direction.

The electric and magnetic fields can be expressed in terms of the
potentials as

�E = −jω�A− 1
ε
curl �F + �Ei, (17)



Wideband analysis of finite-conductivity cylinders 159

Figure 2. (a) Cross section of the array of Figure 1, and the equiv-
alent systems for (b) the exterior region, and (c) interior region of
conductor #1.
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�H = −jω�F − grad Vm +
1
µ

curl �A + �Hi, (18)

where �F is the electric vector-potential, Vm the magnetic scalar-
potential, and �Ei and �Hi describe the excitation. (The grad V term
is missing in (17) because we again assume the electric currents to be
z -directed, with no z -variation.) The potentials in these expressions
are given by

�A = µ

∫
s

�Jsg(r)ds, (19)

�F = ε

∫
s

�Msg(r)ds, (20)

Vm =
1
µ

∫
s
ρmsg(r)ds, (21)

where s is the circumference of the boundary surfaces where the equiv-
alent currents are located. The exact Green’s function (for the two-
dimensional case) for the exterior region is

g(r) = − j

4
H

(2)
0 (kr), (22)

where H
(2)
0 is Hankel’s function of the second kind and order zero,

and k = ω
√
εµ is the phase coefficient, and it includes the retardation.

This function is proportional to the potential produced by an infinite,
uniform line source and it is obtained by integrating exp(−jkr)/(4πr)
over z , from −∞ to +∞ . In the limiting quasi-static case Green’s
function (22) tends to − 1

2π log(kr) , thus yielding the kernel of equa-
tion (6).

For the interior region we have

g(r) =
1
2π

[ker(|γ|r) + j kei(|γ|r)], (23)

where ker and kei are Kelvin’s functions, and γ =
√
jωµσ is the

propagation coefficient in the conductor.
In order to have a zero field within a region in an equivalent system

of Figure 2, according to equivalence theorems it is sufficient to im-
pose the condition than the tangential component of either the electric
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field, or the magnetic field vanishes at the boundary surface. (Ex-
ceptional situations are internal resonances of bounded regions, which
may be a problem in the system of Figure 2b only if the cross section
of a conductor is of the order of the wavelength.) Imposing the first
condition leads to the electric-field integral equation (EFIE) for the
equivalent surface currents, and imposing the second conditions leads
to the magnetic-field integral equation (MFIE). Our extensive numer-
ical experiments have shown that the choice of EFIE for the system of
Figure 2b, i.e., imposing

�Etang = 0 (24)

at the interfaces, and MFIE for the system of Figure 2c, i.e., imposing

�Htang = 0, (25)

provides the widest frequency range in which the present method can
be applied [Djordjević et al., 1985].

In order to avoid a confusion about the impressed electric and mag-
netic fields, our recommendation is not to specify the impressed fields,
but rather sources of this field. Such an approach yields both the im-
pressed electric and magnetic fields, which is important in cases when
both of them are needed (such as in combined-field integral equations).
For example, if we analyze a transmission line (see Section 4), the
sources of the impressed fields can be solenoidal sheets of transverse
magnetic currents, wrapping each conductor (including the equivalent
surface currents). Such a solenoid practically produces a uniform im-
pressed electric field within a conductor in the system of Figure 2b.
However, in the system of Figure 2c there is no impressed field, be-
cause the solenoid is located in the exterior region.

The approximate solution of these coupled integral equation is ob-
tained using the simplest combination of pulse expansion functions and
point-matching. Line magnetic charges are associated with this ap-
proximation of the magnetic currents. (More sophisticated expansions
can also be used, e.g., a continuous expansion for the magnetic cur-
rents, which results in no line magnetic charges.) The matching points
are located at the subsection midpoints. For the system of Figure 2b,
the matching points are located at the inner side of the boundary sur-
faces, and for the system of Figure 2c, the matching points are located
at the outer side. Taking into account

grad g(r) =
dg

dr
ûr, (26)
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where ûr is the unit vector in the radial direction, for the exterior
problem we have

−jω�A = −jζ�Js
∫
s

(
− j

4

)
H

(2)
0 (kr)d(ks), (27)

−1
ε
curl �F = �Ms ×

∫
s

j

4
H

(2)
0 (kr)ûrd(ks), (28)

where ζ =
√

µ/ε is the wave impedance of the dielectric, while for the
interior problem we have

−jω�F = −
�Ms

|ζ̂|

∫
s

1
2π

[ker(|γ|r) + j kei(|γ|r)]d(|γ|s), (29)

−1
ε
curl �A = −�Js ×

∫
s

1
2π

[ker′(|γ|r) + j kei′(|γ|r)]ûrd(|γ|s), (30)

−grad Vm = −| �Ms|
[

j

2π|ζ̂|
[ker′(|γ|r) + j kei′(|γ|r)ûr

]r2
r=r1

, (31)

where r1 and r2 are distances between the end points of a pulse
and the field point, and ζ̂ =

√
jωµ/σ is the wave impedance of the

conductor. Equations (29)–(31) yield a natural condition at higher
frequencies

�Ms = ζ̂n̂× �Js, (32)

where ζ̂ is the wave impedance of the conductor, and n̂ the outer
normal.

4. APPLICATION TO ANALYSIS OF MULTICONDUC-
TOR TRANSMISSION LINES

In the quasi-static analysis of transmission lines, the evaluation of
matrices [B′] (matrix of electrostatic-induction coefficients per unit
length, or the capacitance matrix) and [G′] (matrix of conductances
per unit length) is carried out independently from the analysis of the
matrices [L′] (matrix of inductances per unit length) and [R′] (matrix
of resistances per unit length) [Djordjević et al., 1989]. In many cases,
the results are required only for high frequencies, when the skin effect
is fully developed. In those cases, the matrix [L′] is computed by in-
verting the matrix [B′0] , which is evaluated when the transmission line
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dielectrics are replaced by vacuum, and the matrix [R′] is thereby eval-
uated by perturbation method. The resulting matrix [L′] is frequency
independent, while the matrix [R′] is proportional to

√
f where f

is the operating frequency. At the low-frequency end (towards the
d.c. case), however, the current becomes uniformly distributed over
a conductor cross section, there exist effects of the internal induc-
tance, and the resistance tends to the d.c. value. In the intermediate
region between the low and high frequencies, the edge and proximity
effects take part in addition to the skin effect, which altogether leads to
complicated variations of the matrices [L′] and [R′] versus frequency
[Djordjević and Sarkar, 1993]. The two techniques presented in this
paper can be used to evaluate these variations in a broad frequency
range. Thereby, the volume-current formulation is more convenient
for low frequencies, but it breaks down going into skin-effect region,
as will be demonstrated in Section 5. The surface-current formulation
is more convenient for medium and high frequencies. For both tech-
niques, some remarks should be given about the impressed electric field
and the evaluation of the matrices [L′] and [R′] .

For a real transmission line, the sources of the electric field are
currents and charges. Assuming a pure TEM wave, the currents are
axial, and so are the magnetic vector-potential and the electric field
produced by these currents. The charges produce two components of
the electric field: the transverse one (which gives rise to the voltage
between the conductors) and the axial one (which is fully annihilated
with the electric field produced by the currents). It is well-known from
the transmission-line theory that the electric field within one cross sec-
tion of a transmission line has the same pattern as in the electrostatic
case. As a consequence, a (perfect) conductor is equipotential, i.e.,
the electric scalar-potential V (which is produced by the charges) is
constant over the cross section of a conductor. Thus for the case of
Figure 3 we have V1 = V4 and V2 = V3 . Since

∮
C

grad V · d�l = 0 (33)

for an arbitrary closed path, for the rectangular path 1-2-3-4-1 in
Figure 3 we have

∮
C grad V · d�l = (V2 − V1) + (V3 − V2) + (V4 − V3) +

(V1 − V4) = (V2 − V1)− (V3 − V4) = 0 . If we assume assume that the
distance ∆z between the points 1 and 2 (or 4 and 3) is small, then
ûz · gradV ≈ (V2−V1)/∆z along 1-2, and ûz · gradV ≈ (V3−V4)/∆z
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along 4-3. It is hence obvious that the axial component of grad V is
uniform over the conductor cross section.

In our two-dimensional model of the array of conductors, only the
axial component of the electric field is relevant. The component −ûz ·
grad V must appear in equations, although there is no charge in our
model to produce it. It is the impressed electric field that actually re-
places the axial field produced by the charges, and this field is uniform
within a conductor.

Figure 3. Sketch of a transmission line with two conductors.

The circulation of grad V is also zero for the rectangular path
1-2-5-6-1 in Figure 3. Since V1 − V6 is the transmission-line voltage
at the first cross section, and V2− V5 at the second cross section, it is
obvious that −ûz ·gradV is responsible for the voltage drop along the
transmission line. This component being replaced by the impressed
electric field, the voltage drop per unit length along the line is now

dV

dz
= −(Ei1z − Ei2z). (34)

From telegraphers’ equations we have

dV

dz
= −Z ′I, (35)

where Z ′ = R′ + jωL′ is the impedance per unit length of the line,
R′ is the resistance per unit length, and L′ the inductance per unit
length.
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Let us consider a transmission line with M = N + 1 conductors
(M ≥ 2) . The impressed fields must not be arbitrarily specified for
all M conductors, because the condition (7) would be violated in the
general case. Note that (7) must be fulfilled not only for equation (6)
to be valid, but also to properly model a multiconductor transmission
line, because equation (7) is valid for a TEM wave (and practically for
a quasi-TEM wave), i.e.,

M∑
m=1

Im = 0, (36)

where Im is the current of conductor #m with respect to the reference
direction of the z -axis. In the analysis of multiconductor transmis-
sion lines [Djordjević et al., 1987], usually one conductor (say, #M )
is assumed to be the reference conductor (“ground”), and the volt-
ages between the other, signal conductors and the reference conduc-
tor, V1M , . . . , VNM , are used to describe the state on the line. From
equation (34) it follows that

dVmM
dz

= EiMz − Eimz. (37)

A generalization of (35) yields

d[V ]
dz

= −[Z ′][I], (38)

where
[V ] = [V1M , . . . , VNM ]t (39)

is the column-matrix of voltages between the signal conductors and
the reference conductor (“ t ” denotes transpose),

[I] = [I1, . . . , IN ]t (40)

is the column-matrix of the signal-conductor currents, and [Z ′] is a
square (N by N ) matrix of impedances per unit length,

[Z ′] = [R′] + jω[L′]. (41)

For a transmission line we can specify dVmM/dz arbitrarily, but we
have to force (7) or (36) to be valid. One way to achieve this goal is the
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following procedure [Djordjević and Sarkar, 1986]. We introduce the
augmented vector of current intensities (which includes all M = N +1
conductors),

[Ia] = [I1, . . . , IM ]t, (42)

and the vector of impressed electric fields,

[Ei] = [Ei1z, . . . , EiMz]t. (43)

The following equation is valid because the system is linear

[Ia] = [T ][Ei], (44)

where [T ] is a square (M by M ) matrix. The element Tmn numer-
ically equals the current Im when Einz = 1 V/m, and all the other
impressed fields are zero. We now take n = 1, . . . ,M and evaluate
the elements of the matrix [T ] . Note that this procedure has no phys-
ical interpretation if the volume-current formulation is used, because
each time the currents are evaluated, equation (7) is violated. Fur-
thermore, if the units for coordinates are changed, different answers
for the currents will be obtained. However, this numerical procedure
yields correct final results for the matrix [Z ′] . From (44) we have

[Ei] = [Za′][Ia], (45)

where
[Za′] = [T ]−1 (46)

is the augmented matrix of impedances per unit length. Equivalently,

Eimz =
M∑
m=1

Za′
mnIn. (47)

From (36) we have

IM = −
N∑
m=1

Im, (48)

so that

Eimz − EiMz =
N∑
n=1

[
Za′

mn − Za′
mM − Za′

Mn + Za′
MM

]
In,

m = 1, . . . , N,

(49)
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and the elements of the matrix [Z ′] are evaluated as

Z ′mn = Za′
mn − Za′

mM − Za′
Mn + Za′

MM , m, n = 1, . . . , N. (50)

5. EXAMPLES

The first example is the microstrip line, sketched in Figure 4. The
width of the signal conductor is w = 0.2 mm, the substrate thickness
is h = 0.1 mm, the ground plane width is finite, g = 2 mm, and the
thickness of the signal conductor and the ground plane is t = 0.01 mm.
The conductors are assumed to be made of copper, of conductivity
σ = 56 MS/m. Shown in Figure 5 are the resistance per unit length
and the inductance per unit length of this line, obtained by the two
techniques presented in this paper. For the first technique the conduc-
tors were uniformly divided into pulses (rectangles): nw = 10 along
w , ng = 40 along g and nt = 3 along t , resulting in the total
of 150 unknowns. For the second technique the contours of the con-
ductors were nonuniformly segmented (segment widths progressively
smaller going towards the wedges) into nw = 25 , ng = 50 and nt = 3
pulses, respectively, resulting in a total of 324 unknowns (for electric
and magnetic currents).

Figure 4. Sketch of a microstrip line.

Figure 5 illustrates some features of the two techniques. The volume
-current formulation yields excellent results at low frequencies. For ex-
ample, for f = 10 kHz, the numerical results are L′ = 440.5 nH/m
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and R′ = 9.821 Ω/m , while the analytically calculated values [Djord-
jević and Sarkar, 1993] are L′ = 439.27 nH/m and R′ = 9.821 Ω/m .
The surface-current formulation yields a smaller accuracy, especially
as the frequency becomes very low, primarily due to the −grad V
term in equation (18). The accuracy can be improved at the expense
of taking more pulses. In the medium-frequency region (300 kHz–
30 MHz) the agreement between the two techniques is excellent. In
the high-frequency (skin-effect) region the results for R′ obtained by
the volume-current formulation saturate, instead of increasing as

√
f .

This is due to the pulse approximation for the current distribution, as
there must always be a current in the outermost layer of pulses, while
actually the thickness of the current layer constantly decreases with
increasing the frequency. The results for R′ obtained by the surface-
current formulation follow very well the

√
f behavior. However, at

very high frequencies (above about 10 GHz) R′ starts increasing much
faster. This is a consequence of radiation. Namely, the structure be-
haves like a two-dimensional magnetic dipole, the radiation resistance
of which is proportional to f3 [Djordjević et al., 1985]. The radiation
is a consequence of a uniform current distribution in the z -direction
and will not occur on a real transmission line if the phase velocity of
the current is identical to that in the surrounding dielectric medium
(1/
√
εµ) . However, if a deviation occurs (e.g., due to discontinuities

or a hybrid nature of the wave caused by inhomogeneous dielectrics),
radiation will take place, but it will be pronounced at somewhat higher
frequencies than indicated by Figure 5. There would be no radiation
effects in the numerical model if the quasi-static kernel of equation (6)
were used instead of (22).

The second example are two coupled microstrip lines, sketched in
Figure 6, of dimensions w = 0.6 mm, s = 0.02 mm, g = 2 mm, h =
0.1 mm, t = 0.02 mm, and the conductors are assumed to be made of
copper. Given in Table 1 are the elements of the matrices [R′] and
[L′] for several frequencies, as computed by the two techniques. Large
changes in the element values can be observed, including a change in
sign of the mutual terms. For comparison, the exact d.c. values for
the elements of the matrix [R′] are R′11 = R′22 = 1.935 Ω/m and
R′12 = R′21 = 0.446 Ω/m , while the electrostatic analysis [Djordjević
et al., 1989] yields the high-frequency values (at f = 1 GHz) L′11 =
L′22 = 128.2 nH/m, L′12 = L′21 = 36.6 nH/m, R′11 = R′22 = 23.47 Ω/m ,
R′12 = R′21 = −2.53 Ω/m .
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Figure 5. Resistance per unit length (R′) and inductance per unit
length (L′) of the microstrip line of Figure 4, versus frequency (f) ,
computed using the volume-current formulation ( ) and the surface-
current formulation (— —).

Figure 6. Sketch of two coupled microstrip line.
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Table 1. Matrix elements of coupled microstrip lines sketched in
Figure 6.

6. CONCLUSION

Two methods for analysis of arrays of infinitely long, parallel conduc-
tors were presented and compared. The first method, referred to as
the volume-current formulation, is simpler for implementation. It can
be useful not only for power-engineering problems, but also for thin
and thick-film structures, even in the gigahertz region, because of the
small conductor dimensions. The practical upper limit for the tech-
nique is a few times the frequency at which the conductor thickness
becomes equal to the skin depth. This technique can efficiently be com-
bined with the perturbation approach, which is valid in the skin-effect
region, to cover the full frequency range.

The second technique, referred to as the the surface-current formu-
lation, can be used to cover the full frequency range, but with a caution
for very low frequencies. It includes radiation effects, and gives excel-
lent results in the medium and high-frequency regions. The technique
can be extended to the analysis of systems with piecewise-homogeneous
dielectrics, even to perform a full-wave analysis of guiding structures
[Olyslager et al., 1993] or to evaluate shielding effectiveness taking into
account both field penetration through the metallic shield, as well as
slots in the shield [Djordjević and Sarkar, 1991].

ACKNOWLEDGEMENT

This work was supported in part by E. I. Dupont de Nemours and
Company and by the CASE Center of Syracuse University.



Wideband analysis of finite-conductivity cylinders 171

REFERENCES
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APPENDIX. EVALUATION OF THE INTEGRAL IN
EQUATION (9)

Consider a rectangular cell (Figure 7) carrying a uniform current. The
integral in equation (12) for this cell (Si) has the form

K(a, b, x, y) = −
∫ b/2

−b/2

∫ a/2

−a/2
log

√
(x− x′)2 + (y − y′)2dx′dy′. (51)

We can use the complex calculus, and set z1 = x′+j0 and z2 = 0+
iy′ . The inner integration in the complex plane is along the real axis,
so that dx′ = dz1 , and the outer integration is along the imaginary
axis, so that dy′ = −jdz2 . We can also set z = x + jy , which maps
the matching point to a point in the complex plane. Now,

log
√

(x− x′)2 + (y − y′)2 = Re{log(z − z1 − z2)}, (52)

since
log(z) = log |z|+ j arg(z). (53)

Note that log(z) has a branch cut, which causes problems. On most
computers −π < arg(z) ≤ π , and the branch cut is along the negative
part of the real axis. We define

K2(z) =
∫∫

log(z)dz =
z2

2

[
log(z)− 3

2

]
, (54)

Figure 7. Coordinate system for evaluation of the integral in
Equation (7).
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where the subscript “2” denotes a double integral. Note that K2(0) =
0 . Hence, the double integral in equation (51) can be evaluated as

K(a, b, x, y) = Re

{
jK2(z − z1 − z2)

∣∣∣∣
a/2

z1=−a/2

∣∣∣∣
jb/2

z2=−jb/2

}
. (55)

However, this result is valid only outside the hatched regions of Figure
7. When the point z horizontal boundary of a hatched region, the
argument of one or two logarithms in equation (55) abruptly changes
for 2π due to the branch cut, which causes an error in the result. This
error can be compensated by adding the term −π(a−x)2 to K if the
point is in the single-hatched area, and by adding π[(a+x)2−(a−x)2]
if the point is in the double-hatched area.


