The Name of Institution:

Faculty of Electrical Engineering, University of Belgrade

Description of an Individual Course Unit									
Course Code:	OT3MT	Level of C	ourse: Unde	rgraduate	ECTS	6	Semester:	5	
Course Title:	Microwave Engineering				Year of Study: 3				
Prerequisites:	None	Type of		Mandatory /					
		course:	course: Elective						
Lecturer(s):	Dr. Antonije Đorđević, Dr. Dejan Tošić								
Course Staff:	Dragan Olćan, Marija Nikolić, Miodrag Tasić								
Objective of	✓ Introduction to basic features, equations, and engineering concepts of								
the course:	passive and active components and circuits for frequencies 0.3-300 GHz.								
	✓ I raining students to solve simpler practical tasks and identify paths for								
	solving more complicated problems.								
	• Provide knowledge required as the basis for subsequent microwave-								
Course	Introduction Field theory of guided TEM TE and TM waves								
Contents:	Transmission lines Standing waves Smith chart Rasic matching circuits and								
Contents.	impedance transformers. Field analysis. Classical lines and planar lines								
	Transmission-line components								
	Waveguides, Rectangular waveguides, Circular waveguides, Resonators								
	Waveguide components.								
	Scattering parameters. Definition and basic properties. Terminations,								
	attenuators, phase shifters, power dividers, directional couplers, nonreciprocal								
	devices.								
	Introduction to microwave solid-state devices. PIN diodes. Point-contact								
	diodes. Schotky diodes. Tunnel diodes. Step-recovery diodes. Varactor diodes.								
	Gunn diodes. IMPATT diodes. Bipolar transistors. MESFETs. Microwave								
	integrated circuits.								
	Introduction to microwave tubes. Klystrons. Magnetrons. TWTs.								
	Kaulation of electromagnetic waves. Basic concept and Hertz dipole.								
	distribution Antenna arrays Radiation from apertures Microwaya antennas								
	Scattering and radar equation								
Teaching	45 hours of lectures $+$ 15 hours of supervised problem classes $+$ 15 hours of								
Methods:	laboratory work and midterm test								
	Approximately 60 hours of personal study and exercise (3 hours per week during								
	semester, and approximately 15 hours of preparation during exam term).								
Literature:	Microwave Engineering, A. Đorđević and D. Tošić, Akademska misao, 2006 (in								
	Serbian).								
	Microwave Engineering: a collection of problems, D. Tošić and V. Likar								
	Smiljanić, Akademska misao, 2006 (in Serbian).								
Assessment	Exam – Four-hour examination: 6 theoretical questions (5 points each) and								
methods:	3 problems (20 points each). Successful laboratory work: 10 points. To pass the								
	course, at least 51 points must be achieved.								
	Midterm Test – It can replace 2 questions and 1 problem at the exam.								
Language of	Serbian	Date:	12.10.2006.	Signature	e:				
instruction:				Ŭ					