Feeder Realization for Quasi-lumped Multilayer Resonators With Low Q-factor

Dejan Miljanović

m:tel Bosnia and Herzegovina

Milka Potrebić, Dejan V. Tošić

School of Electrical Engineering University of Belgrade, Serbia

Zoran Stamenković

IHP GmbH, Germany

Relevance of quasi-lumped µW resonators

- S.-C. Lin, C.-H. Wang, and C. H. Chen, "Novel Patch-Via-Spiral Resonators for the Development of Miniaturized Bandpass Filters With Transmission Zeros," *IEEE Transactions on Microwave Theory and Techniques*, vol. 55, no. 1, pp. 137–146, Jan. 2007.
- C.-H. Chen, C.-H. Huang, T.-S. Horng, S.-M. Wu, J.-Y. Li, C.-C. Chen, C.-T. Chiu, and C.-P. Hung, "Very Compact Stacked LC Resonator-Based Bandpass Filters With a Novel Approach to Tune the Transmission Zeros," *IEEE Microwave and Wireless Components Letters*, vol. 19, no. 5, pp. 293–295, May 2009.
- J.-S. Hong, *Microstrip Filters for RF/Microwave Applications*. Hoboken, NJ: Wiley, 2011.

Goals

- Exploit good characteristics of quasi-lumped multilayer resonator (small size)
- Find solution for increasing fractional bandwidth of the filter (lowering loaded *Q*-factor)
- Investigate benefits and drawbacks of proposed solution
- Make conclusions regarding improvements

Realization of Multilayer Resonator

Multilayer resonator is implemented on a double-sided microstrip

Substrate: RT/duroid

 $\varepsilon_{\rm r} = 2.2$ $\tan \delta = 0.001$ $h_{\rm C} = h_L = 1.575$ mm $h_0 = 2t = 36$ µm

- Minimizes the size of the filter
- Retains wide range of achievable coupling coefficients and *Q*-factors
- Potential of further improvements

"L" Shaped Feeder Realization

d – distance between feeder and resonator

Coupling type "*ij*" refers to the sides of the coil to which feeder is coupled "32" shows coupling to 3rd and 2nd coil segmets

Minimum Q-factor obtained is 30

Realized maximum 4% bandwidth for second order filter

Saw-Toothed Feeder for Lower *Q*-factor

w₁ - width of tooth*d* - spacing between teeth*l* - overlapping

- Dimensions *w* and *d* are kept as constants while *l* is changed This way resonator and feeder geometry is unchanged
- Analyzed dimensions
 w = 0.05 mm, 0.1 mm, 0.2 mm while changing l

Achieved External Q-factor and Constraints

- Denser teeth, larger overlapping → greater adjacent area → greater feeder to resonator coupling → lower *Q*-factor
- Modification of the coil by adding teeth, influences on coil parameters and reduces filter resonant frequency Adding teeth to 1st and 2nd segment of the coil destroys coil characteristics and thus is not applicable

Circuit Model of Multilayer Resonator

Design Example

SPECIFICATION

- Second order filter, Chebyshev approximation with
 0.1 dB passband ripple
- Fractional bandwidth B = 0.1, at a center frequency $f_0 = 1.6 \text{ GHz}$
- RT/duroid 5880 substrate with $\varepsilon_r = 2.2$, h = 1.575 mm, tan $\delta = 0.001$, $t = 18 \ \mu m$
- Multilayer realization with $h_1 = h_2 = 1.575$ mm
- Required coupling coefficient between the two resonators is $K_{12} = 0.0935$ and Q-factors $Q_{ei} = Q_{eo} = 14.9$

Correction of Filter Center Frequency

- Required coupling coefficient and *Q*-factors were achievable, but implementation had showed great frequency shift downward due to influence of teeth on coil parameters
- It was necessary to reduce coil inductance and/or capacitor capacitance
- Both changes have made simultaneously to diverse influence of changed geometry
- After compensating frequency shift, coupling coefficients were measured

Coupling Coefficients

Filter Realization

- Distance between resonators 0.3 mm
- Feeder coupling parameters: d = 0.05 mm, w = 0.05 mm, l = 0.4mm
- Reduced coil length for about 1.375 turns
- Reduced capacitor from 4.6 mm × 4.6 mm to 2.3 mm × 4.6 mm

Conclusion

FILTER

- Multilayer approach
- Size reduction $(11.2 \times 4.6 \text{ mm}, 0.087 \lambda_g \ge 0.036 \lambda_g)$

SAW-TOOTHED INDUCTIVE FEEDER

- Various adjustments for teeth
- Decreasing the *Q*-factor
- Limited number of combinations compared to "L" shaped inductive feeder but greater filter bandwidth

Further research

FURTHER RESEARCH COULD INCLUDE:

- Analysis of higher-order bandpass filters for increased selectivity
- Analysis of conductive coupling for further decreasing of *Q*-factor

Feeder Realization for Quasi-lumped Multilayer Resonators With Low Q-factor

Your questions and observations are welcome and appreciated!

Dejan Miljanović

m:tel Bosnia and Herzegovina

Milka Potrebić, Dejan V. Tošić

School of Electrical Engineering University of Belgrade, Serbia

Zoran Stamenković

IHP GmbH, Germany

