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Time-Domain Response of Multiconductor

Transmission Lines

ANTONIJE R. DJORDJEVIC, TAPAN K. SARKAR, SENIOR MEMBER, IEEE,

AND ROGER F. HARRINGTON, FELLOW, IEEE

Evaluation of the time-domain response of multiconductor
transmission lines is of great importance in the analysis of the
crosstalk in fast digital circuit interconnections, as well as in the
analysis of power lines. Several techniques for the computation of
the line response, starting from the known circuit-theory parame-
ters, are presented and evaluated. These methods are: time-step-
ping solution of the telegrapher equations, modal analysis in the
time domain, model analysis in the frequency domain, and a con-
volution technique which uses line Green’s functions. The last
method can treat the mast general case of lossy transmission lines
with nonlinear terminal networks. Numerical and -experimental
results are presented to illustrate these techniques and to give
insight into the crosstalk problems in fast digital circuits.

I. INTRODUCTION

The purpose of this paper-is to present and compare sev-
eral methods for the analysis of multiconductor transmis-
sion line response. This response is of greatinterestin mod-
ern, fast computers, where signals are carried from one chip
to another along buses, which are transmission lines with
many conductors, and they are most frequently fabricated
on printed-circuit boards. The signals suffer certain dis-
tortions along the line, which might degrade the perfor-
mance of fast computers. A knowledge of the line response
is essential for the design of the signal paths in such cases.
A transient analysis of multiconductor transmission lines
is also important for power systems, where it is used to pre-
dict the behavior of long power lines excited by lightning
strokes, or under other disruptions, such as a short circuit
at some place. However, our principal concern is with the
printed-circuit lines, although the techniques presented
below can be applied to other multiconductor transmission
lines.

Arigorous analysis of a multiconductor transmission line
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is very involved, especially if the response at high fre-
quencies (usually, in the gigahertz region) is to be properly
evaluated. First, a real multiconductor transmission line is
most frequently embedded in an inhomogeneous medium,
and thus the waves that propagate along the line are not
of the transverse electromagnetic (TEM) nature. However,
even if the medium is homogeneous, due to the losses in
the conductors, the line cannot support TEM waves. At very
high frequencies (in the microwave region), the cross-sec-
tional dimensions of the line become comparable to the
wavelength, and higher order (again, non-TEM) modes can
propagate. Secondly, the analysis is complicated by having
to include the influence of discontinuities, present at line
ends, bends, crossovers, etc. Finally, in order to evaluate
the response of a transmission line terminated by arbitrary

networks, which are, generally, nonlinear (e.g., active com-

ponents) and with memory (i.e., contain capacitors and
inductors), one has to consider the whole system simul-
taneously.

Perhaps the most general approach to evaluating the time-
domain response of any electromagnetic system (such as
a transmission line, or an antenna) is to solve Maxwell’s
equations in the time domain, or to utilize certain integro-
differential equations which stem from Maxwell’s equa-
tions [1]. Such a procedure could, in principle, take into
accountall the effects of the system geometry and electrical
properties, and also include nonlinearities. However, such
a method would be rather involved even for the simpler
structures, and very hard to implement even on very large
and powerful computers. Therefore, certain approxima-
tions are usually introduced, which greatly simplify the
analysis.

First, we are going to consider the multiconductor trans-
mission line to be uniform along its length. At the ends, the
lineis terminated by arbitrary networks. If the line has some
discontinuities along its length, it can be divided into a
number of uniform sections and the effects of the discon-
tinuities can be taken into account by introducing suitable
equivalent networks, such as those listed in [2] for micro-
strip lines.

Secondly, we are going to assume that the line behavior
can completely be described in terms of circuit-theory
parameters, i.e., in terms of matrices of inductances, capac-
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itances, resistances, and conductances per unit length (31
These parameters can be frequency-dependent (e.g., due
to skin effect, or due to dielectric losses), although they are
often takento be constant. Inthe present paper, we are not
going to discuss the evaluation of these parameters, i.e.,
these parameters are assumed to be known. The analysis
which is based on the circuit-theory parameters is usually
referred to as quasi-TEM analysis, because we have to
assume the wave propagation along the line to be of a quasi-
TEM nature in order to be able to define the line circuit-the-
ory parameters.

With these assumptions, the multiconductor transmis-
sion line can be described by a system of partial differential

- equations in the time domain or by a system of ordinary
differential equations in the frequency domain. These
equations are given in the second section.

There are several methods of solving these equations.
The conceptually simplest, but usually least efficient tech-
nique, is the time-stepping method. It can be applied to
multiconductor transmission lines with frequency-inde-
pendent parameters and with arbitrary terminal networks.
This method is presented in the third section.

Along a transmission line with N signal conductors and
one return conductor (the ground), generally N different
quasi-TEM modes can propagate (at any frequency). For a
lossless line (with frequency-independent parameters),
such modes exist in the time domain, and they can also be
defined in the frequency domain. However, for a lossy line,
in the general case, the modes can be defined in the fre-
quency domain only. Modal analysis is a very efficient tech-
nique for evaluating the response of a multiconductor
transmission line. It is presented in the fourth and fifth sec-
tions of the paper, for the time domain and for the fre-
quency domain, respectively.

A particular problem in the analysis of multiconductor
transmission lines is the inclusion of the terminal network
analysis. If these networks are linear, the analysis can be
performed either in the time domain, or in the frequency
domain. In the latter case, the Fourier transform may be
used to switch between the time domain and the frequency
domain. If the line is lossless, with frequency-independent
parameters, the entire analysis can be performed in the time
domain. In other cases the analysis must be performed in
the frequency domain. Problems arise when the terminal
networks are nonlinear. In the general case, such networks
can be analyzed only in the time domain. In contrast, in
some cases the analysis of the line has to be performed in
the frequency domain. A way of combining these two solu-
tions which enables the analysis of lossy lines (or lines with
frequency-dependent parameters) with nonlinear terminal
networks is presented in the sixth section.

In the seventh section several examples of the analysis
of multiconductor transmission lines are given. In one case
they are compared to experimentally obtained data.

Finally, in the eighth section, the various techniques for
the multiconductor transmission line analysis are evalu-
ated and compared.

The beginnings of transmission line analysis go back to
1883 [4]. In 1926 weakly coupled lines were analyzed [5], and
in 1937 and 1941 arigorous theory of coupled lines was given
in terms of matrix equations 6], [7]. A modal theory of a pair
of coupled lines was established in 1947 [8]. A justification
of the quasi-TEM approximation of transmission lines can
be found in [9].
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The analysis of multiconductor transmission lines has
found its mostimportantapplications in power distribution
systems, in the analysis of crosstalk in fast digital circuits,
in microwave theory [10]-{28], and in EMP (electromagnetic
pulse) investigations. In many papers, computer algorithms
are proposed for evaluation of the response of multicon-
ductor transmission lines. In [23] and [27], two lumped-ele-
ment models are considered. tn [13], [19], and [21], com-

- puter-oriented models of lossless lines are described, while

[15], [16}, [23], and [28] give methods for the analysis of lines
with frequency-dependent losses. Some of the latter tech-
niques are based on the inverse Fourier transform, e.g., [15],
while others include the convolution integral, e.g., [16]. In
[17], a treatment of nonlinear systems is given. In [24], the
theory of lossy muiticonductor transmission lines is effi-
ciently applied to the analysis of interdigital and similar
microwave filters. Of course, the above list of references
is by no means exhaustive.

Il. Quasi-TEM EQUATIONS FOR MULTICONDUCTOR
TRANSMISSION LINES

Let us consider a transmission line having a total of
(N + 1) conductors (Fig. 1). We assume that N conductors
are signal conductors, and conductor number (N + 1)is the
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Fig. 1. Sketch of a multiconductor transmission line with
terminal networks.

ground (reference) conductor. We further assume that the
ground is at zero potential. The transmission line is assumed
to be of an arbitrary cross section, but uniform along its
length. Let the x-axis be oriented along the length of the
transmission line, with x = 0 corresponding to the gen-
erator position, and x = D corresponding to the load posi-
tion. If the line dielectric is homogeneous, and if the con-
ductors are lossless, the transmission line can support the
so-called TEM waves at any frequency. A fundamental prop-
erty of these waves is that the electric-field vector E and the
magnetic-field vector H have only components perpendic-
ular to the direction of propagation along the line. In other
words, for these waves £, = 0 and H, = 0. Strictly speaking,
in the presence of inhomogeneous dielectrics and/or losses
in the line conductors, the waves that propagate along the
line cannotbe of a TEM type. They are, generally, of a hybrid
nature (i.e., a combination of TE and TM modes). These
waves have £, # 0and H, # 0. However, for suitable dimen-
sions of the transmission line (i.e., for the maximal cross-
sectional dimensions of the line sufficiently smaller than
the wavelength of the highest frequency component of
interest), the longitudinal field components are much
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smaller than the transversal components. Therefore, these
hybrid waves can be approximated by TEM waves, which
are, more precisely, called quasi-TEM waves. We shall
assume throughout the analysis that we have only the quasi-
TEM propagation.

Quasi-TEM wave propagation can be analyzed either
starting from field theory, i.e., from Maxwell’s equations,
or starting from distributed-circuit parameters. These two
approaches yield practically identical results for low-loss
lines not at extremely high frequencies, which is the case
considered here. For amore detailed treatment of this prob-
lem, refer to [29].

In the analysis we assume that we know the matrices of
the line circuit-theory parameters, namely, that we know
the following N x N matrices: matrix [L] of inductances per
unit length, matrix [R] of resistances per unit length, matrix
[B] of electrostatic induction coefficients per unit length,
and matrix [G] of conductances per unit {fength. Note that
the elements of matrix [B] are frequently referred to as the
capacitance coefficients. However, these coefficients are
not equal to the self- and mutual capacitances between the
conductors, and the term “capacitance coefficients” might
be confusing. The self-capacitance of the kth conductor
equals the sum of the electrostatic induction coefficients
in the kth row of matrix [B], while the mutual capacitance
between the kth and fth conductor equals the negative of
the coefficient By, of matrix [B]. Note that the mutual capac-
itancés are always positive, while the off-diagonal coeffi-
cients of the [B] matrix are always negative.

Let v(x, t) represent the voltage between the kth S|gnal
conductor and ground at a distance x from the generator
end and at a particular time instant t. Let ig(x, t) be the cur-
rent flowing through the kth conductor, ata distance x from
the generator end and at a particular time instant ¢. It is
assumed that the reference direction of the current s from
the generator to the load end. It is well known from circuit
theory that the voltages and currents along a transmission
line for the TEM mode of propagation are related by the
telegrapher equations

vilx, O = .
an = 2 Rudex,
N.
31,(x t)
t§1 Lie at
k=1-++,NO0<x<D ¢)]
dix, ) &
ax = l§1 levl(xl t)
_ avylx, t)
by et T T

k=1---,N0<x<D. 2)

In these equations, the self- (Ry) and mutual (Ry, k # )
resistances are due to conductor losses, the self- (L) and
mutual (L, k # £) inductances determine the induced EMF
due to the electromagnetic induction, the self- (G} and
mutual (G,,, k # £) conductances are due to losses in the
dielectrics, and the self- (By) and mutual (B, k + £) coef-
ficients of electrostatic induction are due to the electro-
static effects. It is worth noting that (1) and (2) are valid only
for a line with parameters which do not depend on fre-
quency. If this is not the case, the line has to be described

by more complicated equations, which are beyond the
scope of this paper.

Equations (1) and (2} can be put in a simpler form if we
introduce the voltage and current vectors
SN B, 0<x<D (3)
’ iN(x' t)]T'

where the superscript “T*’ denotes the transpose. Now we
have instead of (1) and (2) the following matrix equations:

vix, Olvxs = [vilx, 8), - - -

[itx, Odnxq = lialx, 8), - - - 0<x<D @

M = —[R]lix, 0] — [L] —== ﬂ[l(x alitx, 1) "
X

i, ¢ |

_[L%TH - [Gllv(x, 8)] — [B] ———= a[V(x t)]. ©

These equations can be transformed into the frequency
domain to read

dV(x)]

oo = IR - jellll],  0<x<D @

I . N
d[d(;()] = —[ClIV)] — Jo BV,

0<x<D (8

Here w is the angular frequency, [V(x)] is the vector of com-
plex line voltages, and [/(x)] is the vector of complex line
currerits. If we introduce the matrices of line impedances
and admittances per unit length

[Z] = [R] + jwlL] )
[Y] = [G] + ju{B] (10)
(7) and (8) can be simplified to
mwm -[ZIx, 0<x<D (11)
% = —[YIVX)], ©0<x<D. . (12)

Note that (9) and (10) allow the elements of matrices [R] and
[G], as well as those of matrices [L] and [B], to vary with fre-
quency. However, in that case, going back to the time
domain, we do not obtain (1) and (2) from (11) and (12), as
noted before.

The telegrapher equations (5) and (6} ini the time domain,
or (11) and (12) in the frequency domain, fully describe the
transmission line. However, in order to find the response
of the line terminated by certain networks, one has to con-
sider the telegrapher equations simultaneously with the
equations describing the terminal networks. The latter
equations represent boundary conditions for the telegra-
pher equations, at x = 0 and x = D. These equations give
relationships between [v(0, t)] and [i0, 8], at x = 0, and
between [v(D, t)] and [i(D, 1)}, at x = D. There is no general
form of these equations, since they depend on the terminal
networks.

We are going to consider several special cases of linear
terminal networks. The analysis of lines with nonlinear net-
works is postponed to Section VL. If the terminal networks
consist of independent generators and linear, time-invar-
iant resistors, the line voltages and currents satisfy the fol-
lowing boundary conditions:

v, 8] = [ve(] — [RAIiO, )] 13
v(D, 0] = Iv(t)] + [RILD, 1) (14
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Here [Rg] is the resistance matrix of the generator network,
[R;] is the resistance matrix of the load network, [v;(8)] is
the open-circuit voltage vector of the generator network,
and [v/{t)] is the open circuit voltage vector of the load net-
work. (For the sake of generality, we have assumed that gen-
erators can be present at both line ends, which are only
arbitrarily referred to as the generator and load ends.)

Boundary conditions similar to (13) and (14) can be writ-
ten in the frequency domain for more complex terminal
networks, consisting of arbitrarily interconnected linear
elements (e.g., resistors, capacitors, and inductors) and
generators. In that case we have

V)] = [Val — [Z1[10) (15)
VD) = (Vi1 + [Z]D)) (16)

where [V] and [V,] are the complex open-circuit voltage
vectors of the two-terminal networks, and [Z] and [Z,] are
the impedance matrices of these networks.

Note that in the above examples we have assumed that
the terminal networks are mutually coupled only through
the transmission line, i.e., we have assumed that there is
no other circuit element connecting the two terminal net-
works.

Besides the boundary conditions, for the time-domain
analysis we need to know a set of initial conditions for the
line voltages and currents at a certain time instant t. In the
present analysis we are going to assume that at t = 0 the
line is empty, i.e., devoid of any voltages and currents. In
other words, our initial conditions read

vx, 0] =0, 0<x<D (17)
liix, )] =0, 0 < x < D. (18)

For the purpose of the modal analysis, we have to derive
the wave equations from the telegrapher equations. Let us
first consider (5) and (6), in the time domain. Using simple
manipulations with these equations we can get the wave
equations in the time domain

a , Av(x,
At O _ (RiiGitves, o + {iR1eED + ey 2%
X at
2)
+m e ooxcn a9
i :
T 0 - w01 + {18tk + Gy 1A
X ot
2
+iam Y o x<p. (20)

atr '

From these equations we can directly write the wave equa-
tions in the time domain for a lossless line

Mvix, O] Av(x, 1]

=[L[Bl———, 0<x<D 1

ax* at?
2. q
2~ ——"2[';’:; 9 o<x<D @

Although (19) and (20), or (21) and (22), appear to be two
independent matrix equations for the line voltages and cur-
rents, respectively, they are not independent, because the
voltages and currents are mutually related through the
telegrapher equations (5) and (6).

Starting from the telegrapher equations (11) and (12), in
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the frequency domain, we can derive the wave equations
in the frequency domain for a lossy transmission line as

2

Iz, o<x<p @y
2

d_cg(%‘-)l = [VZIIx), 0<x<D. (24)

The following four sections are devoted to various pro-
cedures for solving the telegrapher and the wave equa-
tions, subject to appropriate boundary and initial condi-
tions. Numerical examples are given in Section VII.

Hi. TIME-STEPPING SOLUTION

This method, sometimes also referred to as marching on
in time, consists of making a finite-difference approxima-
tion tothe partial derivatives in (5)and (6). The discretization
with respect to the space coordinate (x) can be equivalent
to an approximation of the transmission line by a lumped-
element network. An example of such a network is shown
in Fig. 2 for a three-conductor transmission line (i.e.,
N = 2). In this case, each signal conductor is replaced by
a chain of T-networks. The mutual couplings between the
conductors have been taken into account through the
inductive, resistive, capacitive, and conductive coupling
elements. Each cell approximates a transmission line sec-
tion of length Ax. Hence, each inductive lumped element
of the cell is given by L,/2 = (L, Ax)/2, while mutual induc-
tances are L /2 = (L AX) 2 (k # £). Since the inductive
elements of two adjacent cells are connected in series, they
can be replaced by a single element of inductance L Ax.
However, this procedure cannot be applied to the induc-
tance elements located at the ends of the line. Similarly,
each resistive element of the cell is given by RJ/2 =
(Rix Ax)/ 2, and mutual resistances are R ,/2 = (R, ,Ax)/2 (k
# ). Note that the mutual resistances are due to the finite
conductivity of the ground conductor, as well as to the eddy
current induced in one signal conductor due to the current
in another signal conductor. The adjacent resistances can
be combined into a single resistance, just like the induc-
tances. The capacitance of lumped elements connected
between the signal conductors and ground are

N
Ck = 121 Bk(AX

while the capacitances of the elements connected between
the signal conductors are C,xp = —Bi/Ax (k # ). Similarly,
conductances are given by

N
Gk = IZ‘I GrAx and Gmkg = “Gk(AX k = 0.

It should be pointed out that instead of the T-cells we could
have utilized x-cells or half-cells in making the lumped-cir-
cuit equivalent of the transmission line. If the cell lengths
are small enough, then, of course, the various models would
yield similar results.

By approximating the transmission line by a network of
Tcells, we have eliminated the derivatives with respect to
space and replaced them by finite differences. Observe in
this procedure that the voltage and current nodes are sep-
arated by a distance of Ax/2. This is in contrast to the clas-
sical methods for solving partial differential equations
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Fig. 2. Lumped-element equivalent circuit of a lossy transmission line with two signal

conductors.

where the samples of both voltages and currents are taken
at the same points along the x-axis.
For the network shown in Fig. 2 we now have

[V +40] — [vp()] = —aAxIR]lin(0]

- aAx[L) dL’d";@,
m=1---,P+1 25)
lim+ 1] — [0 = — AX[G][Vin +1(D]
- AX[C] divn‘.j;1(t)]'
m=1,---,P. (26)
Here P is the number of cells, so that
Ax = D/P. 27)
Also,
a=12 form=1and (P + 1),
and a =1, otherwise. (28)

The vector [v,,(t)] contains line voltages in the middle of the
mth cell, except for [v4(f)] and [v,. ()] which contain line
voltages at the generator and load ends, respectively. The
vector [in(t)] contains line current at the junction of the
(m — Nth and mth cells. Note that the positions at which
the voltages [v,(t)] are defined are given by

x =D,
and x = (m — 3/2)Ax,

x=0, form=1, form="P+ 2,

otherwise. 29
The locations of the currents [i,(t)] are
x ={m — NAx, m=1---,P+1. (30)

Now we replace the time derivatives in (25) and (26) by the
following finite-difference scheme:

div,(®] = Dl + 1] ~ V()]

1
dt |ionac At 61
dlin(0] _ limin + D] = [in@n)]
dt l_pac At (32)

where Atis a prefixed time step. It is implied in (31) and (32)
that {v,(n)] represents [v,(nA®] and [i,(mM] represents
lin(n At)}. Substitution of (31) and (32) into (25) and (26) yields

Vm(n + DI = {[U] — At[B]""[CT} V()]

At
v B {lim-+(M] — [im(mM1},

m=2--,P+1 (33
limin + 1] = {[U] ~ At[L}""[R]} lin(n)}

At

1
vl I (X0 B VAR

m=1-,P+1 (34)

where [U] is the identity matrix.

Now, we solve the difference equations (33) and (34), sub-
ject to the boundary and initial conditions. If the terminal
networks consist of generators and linear, time-invariant
resistances, the boundary conditions (13) and (14) are valid,
and they become

vim = [ve(m] — [Relliy(m)] 35

e+ 2(M] = [vi(m] + [Ry1ip, ()] (36)

The initial conditions are
va(0)] = [0],

lim(©@)] = [0],

where [0] is a null vector.

The system of equations (33) and (34) along with the
boundary conditions (35) and (36), and with the initial con-
ditions (37) and (38) can be solved numerically by stepping
in time, i.e., by successively takingn = 1,2, - - - . Note that
fvi{m] and [v,, 1(n)] should be determined from (35) and (36)
prior to calculating [i(n + )] from (34).

The above procedure is equivalent to using Euler’s
method for solving a system of simultaneous differential
equations.

The time-stepping procedure has certain advantages and
drawbacks when compared to other methods. It is simple
to code, but it takes a lot of computer time to execute. It
can easily be interfaced to time-stepping procedures for
solving terminal networks in the general case (i.e., nonlin-
ear networks with memory). However, this procedure can-
not be used for analysis of lines with frequency-dependent
parameters, unless complicated equivalent networks are
used for each conductor.

In the implementation of the time-stepping procedure
care should be exercised to choose correctly the number
of cells and the time step. The number of cells should be
such that the line transit time over one cell is much shorter

m=2--,P+1 37
m=1-,P+1 (38)
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than the rise (or fall) time of the waveforms considered (e.g.,
10 times smaller). Too many cells greatly increase the run-
ning time. The time step should be much smaller than the
transit time along a cell, in order to reduce parasitic oscil-
lations and avoid divergence of the response. Numerical
experiments have shown that the time step should be kept
below about 1/20 of the transit time along a cell, at least for
P in the range from 5 to 50. Of course, the stability of the
time-stepping method can be improved by using more
sophisticated methods for solving differential equations,
rather than the Euler method, but in that case the simplicity
of the programming, which might be the greatest advan-
tage of the time-stepping method over the modal analysis,
is definitely lost.

Numerical experiments have also shown that to obtain
a good response a large number of cells is usually needed,
which, in turn, requires a very small time step. Hence, the
computer running time becomes prohibitively large if a
good response is expected for along transmission line, i.e.,
aline the transit time of which is much greater than the rise
and fall times of the waveforms being transmitted along the
line. A numerical example of the time-stepping solution is
given in Section VII.

V. MODAL ANALYSIS IN THE TIME DOMAIN

In this section we are going to consider only lossless lines.
By force of the quasi-TEM approximation such lines have
frequency-independent [L] and [B] matrices. A lossless line
embedded in an inhomogeneous dielectric (the properties
of which vary only over the line cross section, but not along
the line length) is a dispersive transmission medium. How-
ever, there exist special sets of conductor voltages and cur-
rents for which the propagation is nondispersive. These sets
are called the eigenmodes. (Generally, such modes in the
time domain do not exist for lossy lines.) The line voltages
and currents of an eigenmode can be represented as

v™(x, )] = [V718™(t F x/c,), m=1-,N (39

[(™x, 0] = £ F1g™(t F x/cy),

where the superscript “m’ represents the mth eigenmode,
cp is the velocity of the mth eigenmode propagation along
the transmission line, [V§] and [/ §] are two sets of constants
representing relative amplitudes of the conductor voltages
and currents, and g"(f) is an arbitrary function of time, which
we shall refer to as the mode intensity. The upper signs in
the above equations correspond to an eigenmode traveling
from the generator towards the load end, i.e., in the direc-
tion of the + x-axis. This eigenmode is usually referred to
as the incident wave. The lower signs correspond to an
eigenmode traveling in the opposite direction, and it is
referred to as the reflected wave.

For a transmission line with N signal conductors there
exist, in the general case, N linearly dependent vectors
[V§'] and corresponding [/}, which are unique to within a
multiplicative constant, i.e., there exist N distinct eigen-
modes. Each mode has its own velocity of propagation.
However, in certain cases these velocities can coincide (e.g.,
if the line dielectric is homogeneous), and the modal volt-
age and current vectors are not linearly independent.

Note that [V§1and [/§7] are related through (5) and (6), in
which we have to put [R] = [0] and [G] = [0]. Also, (39) and

m=1,---,N (40
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(40) represent a particular solution to the wave equations
(21) and (22).
If (39) is substituted into (21) we obtain

1 -
{? w1 - [L][B]}[V(’,"]g”‘(t + x/cp) =0 (41)
where [U] is the identity matrix. In order that (41) has non-
trivial solutions for the line voltages, the determinant of the
first term must be zero, i.e.,

det {lz v - [L][B]} = 0. 42)
Cm
Equation (42) is an eigenvalue equation, and 1/c?, is an
eigenvalue of the matrix [L] [B). Therefore, we can consider
[Vg'1to be an eigenvector of the matrix [L] [B] corresponding
tothe eigenvalue 1/c2,. Since [L][B]is an N X N matrix, there
will be N eigenvalues (not necessarily distinct) and N eigen-
vectors. These eigenvalues and eigenvectors can be com-
puted by using standard procedures (e.g., [30]).
Equation (22) can be transformed similarly to an eigen-
value equation through the substitution of (40), to yield

det {Elz- (U] - [B) [L]} = 0. (43)

In this case, we would find [/T], which is an eigenvector of
the matrix [B]{L] corresponding to the eigenvalue 1/c2,. Note
that the eigenvalues of the matrices [L] [B] and [B] [L] coin-
cide, but the eigenvectors are, generally, different. As noted
before, the voltage and current eigenvectors are related
through (5) and (6). Hence

1
[ = (1 ve - (44

m

) 1
vel = 81y - (45)

Atthis point is it convenient to introduce two square matri-
ces, [Sy] and [S]], both of dimensions N x N. The columns
of these matrices are the voltage and current eigenvectors,
respectively, i.e,,

(Svl = {tval, - - - , V3D (46)
(Sd = {13, - -+, U3} (47)
From (44)-(47) it follows that
[S1 = [L17"[Sv] (A (48)
[Svl = [BI7"[S) [A) (49)

where [A] is a diagonal matrix the elements of which are
Ve, m=1,--+,N,ie,

[A] = diag [1/cq, - -, eyl (50)

The conductor voltages and currents can be represented
as sums of the incident and reflected waves in terms of the
matrices [Sy] and [S,). Hence

[V(X, t)] = [Vinc(x' t)] + [Vref(xl t)]

= [SV] {[ginc(xr t)] + [gref(x/_ t)]} (51)
litx, O] = liinc(x, O] + lirer(x, 1]
= [SH{[gincX, O] — [grerlx, D]} (52)
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where
[ginc(xr 9] = [g?nc(t = XIC'I)' Tty gi';,\c(t - XICN)]T (53)
[8ret(X, D] = [greelt + Xlc), - -+, ghstt + xlc)l’.  (54)

The characteristic impedance matrix (Z] of the transmis-
sion line is defined by the relations

[Vinc(xl t)] = [Zc][iinc(xf t)] (55)
Viet(x, O] = —[Z]lies(x, )] (56)

which must be valid for any incident and reflected wave,
respectively. The characteristic admittance matrix [Y] of the
line is simply

Yl =11z1" (57)

Clearly, due to (57) and (52), the characteristic impedance
matrix must satisfy the equation

[Sv] = [ZJ(SA (58)
Now from (48) and (49) we have
[Zd =[Syl IS17"
= [Sy1 A1 ISvI7 1L
= [BI"'[SA A} [S17". (59

Our next concern will be the treatment of the terminal
networks. There are two ways to simultaneously analyze the
transmission line and the terminal networks. One way is to
incorporate the analysis of the terminal networks into the
analysis of the transmission line. For that purpose we have
to know, at eath time instant, the equivalent parameters of
the terminal networks, as seen from the transmission line.
These parameters can be, for example, the instantaneous
Z-parameters of the terminal networks. The other way is to
incorporate the analysis of the transmission line into the
analysis of the terminal networks. For that purpose we have
to know the instantaneous parameters of the transmission
line, as seen from the two terminal networks.

Let us now consider the first approach. Suppose that we
know the equivalent Thevenin’s representation of the ter-
minal networks, i.e., the resistance matrices [R¢] and [R,],
and the open-circuit voltage vectors [v(f)] and [v,(t)]. Note
that we can allow the resistance matrices to be time-depen-
dent. Such equivalent instantaneous parameters can be
defined not only for purely resistive linear networks, which
may contain generators, but also for any kind of linear net-
works, even with memory.

Combining (13) and (14) with the first parts of (51) and (52),
and with (55) and (56), we obtain the following relations:

[Vinc(0, 8] = [7cllve(®] + [pcllvier (0, 0] (60)
[Vref(D: 0] = [7]lvi(0] + [p)vinD, B]. (61

Here [7¢], [pg), [7/], and [p,] are called the generator trans-
mission coefficient, generator reflection coefficient, load
transmission coefficient, and load reflection coefficient,
respectively. All four matrices have the same dimensions,
N X N. These matrices are given by

lrd = [ZI{[Re] + (ZJ} " (62)
lecl = {[Rd — [ZJ} {IRc] + [ZJ} (63)
7] = [ZJ{R] + (21} " (64)

[ed = {[R] - [Z2} {[R] + [Z1} . (65)

The voltages [vi,(x, 0] and [v,(x, t)] can be related to the
modal intensities [ginc(x, ] and [g(x, D), respectively, by
using (51) and (52). Thus we get

[8inc©, 0] = [78)Iv ()] + [pTI[g,es(0, D] (66)

[gref (D; t)] = [TT] [Vl(t)] + [pin] [ginc(D; t)]‘ (67)

We shall refer to the N X N matrices [rZ], [oZ], [+]], and
[»{"] as the modal transmission and reflection coefficients.
These N X N matrices are defined by

[r&1 = (Sv17 74l {68)
(081 = [Sv]™ " [pd) [Sv] (69)
[ = (Sv17"[7d (70)
[o] = [Sy17 '[P [Sy]- 1)

The advantage of dealing with the modal transmission and
reflection coefficient is that we can directly trace the indi-
vidual modes, without having to find the conductor volt-
ages and currents. However, the conductor voltages and
currents can be calculated at any point if the modal wave-
forms are known by utilizing (51) and (52).

Assuming that the terminal network Z-parameters are
known, we can now determine the modal intensities [ginc
(x, D] and [ gres(x, D). If the terminal network parameters are
given analytically, the modal intensities can be obtained by
an analytical procedure. However, for each mode we have
to track a wave being launched from one transmission line
end, reaching the other line end, being reflected from that
end, reaching the firstend, being re-reflected from thatend,
etc. At each reflection each mode, generally, excites both
that mode and all the other modes. After a few transitions
along the line the analytical procedure might become pretty
cumbersome and it might not be suitable for a computer
implementation.

In the case when the analytical mode tracking is imprac-
tical, we can use only time samples of the modal intensities
to obtain a computationally simple and efficient algorithm
for mode tracking. For simplicity, let us suppose that we are
sampling uniformly, with a sampling interval At. Let us also
start at t = 0, assuming that the initial conditions (17) and
(18) are valid. In that case, initially, the samples of [ginc
(0, kAt]and [g.¢(D,kAD), k =0,1, - - -, arereadily available,
because we know the open-circuit voltage vectors [vg (kAD)]
and [v,(kA?)). (We assume that generators can exist at both
line ends.) At that early time, the incident wave has not yet
reached the load end, nor has the reflected wave reached
the generator end. However, after one line transit time,
defined for each mode as Di/c,, the incident and the
reflected waves appear at the load end and at the generator
end, respectively. The samples of these waves are already
known, because the intensities of these waves are exactly
the same as at the line end from which the waves have been
launched, but they are only delayed in time by D/c,,,. Hence,
the samples of the waves launched from the line ends are
again easily calculated from (66) and (67). For such a case
we can easily track the modes after as long a time interval
as we wish. It suffices to store the samples of [ gin(0, t)] and
[g(D, 0] in appropriate shift registers, and compute con-
ductor voltages and/or currents.at both line ends. The length
of the registers (i.e., the number of samples S kept in these
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registers) must be such that the time interval spanned by
the samples (SA?) is longer than the longest modal transit
time from one transmission line end to the other, i.e.,

SAt > max {D/c,,}. (72)
m

The only problem in such a mode tracking method is that
generally Dic,, m = 1, - - -, N, is not an integral multiple
of At. Hence, the samples [g..(D, kAt)] cannot be obtained
directly from the samples [gin(0, kAD], by simply delaying
the latter samples. A similar conclusion is valid for obtain-
ing the samples [ g,s(0, kKAD)] from [g,.(D, kAt)}. However,
an interpolation between the samples can be applied. For
example, if wetakealinear interpolation, for tin the interval

kAt < t < (k + 1At (73)
we obtain
t — kAt
gi’:c(ol f= —A—t_ gmc(O, k + DAY
t - (k + At
T At ginc(0, kAD) (74)
t — kAt
grei(D, 1) = ——— gree(D, (k + DAY

_t—(k+1)At

L&D, kA, (75)

Equations (74) and (75) enable us to determine the inter-
polated values of the launched waves which we need to
obtain the propagated waves at the other end (delayed, of
course, by Dic,,).

The above procedure cannot be applied if the terminal
networks are nonlinear, because for such networks we can-
not obtain a linear Thévein equivalent (i.e., the instanta-
neous Z-parameters). In such cases, we have to use a special
program for solution of the terminal networks and incor-
porate the analysis of the transmission line into the analysis
of the terminal networks. Thereby we need to have instan-
taneous Z-parameters of the transmission line, as seen by
theterminal networks. It can be proved easily that alossless
transmission line can equivalently be represented with
respect to its terminals by two networks, each of the net-
works corresponding to one line end. The networks are
purely resistive, with time-independent resistances, and the
resistance matrices of the networks are identical to the
characteristic impedance matrix of the transmission line.
Ideal voltage generators, the EMFs of which equal twice the
voltage of the wave incoming on that port, are connected
in series with this resistive network. This equivalent rep-
resentation is sketched in Fig. 3. The terminal networks have

2V o5y O1) TRANSMISSION LINE Viney(D:t)

) O
A NS

L ¥ pe——————

. S Z. Zc o

‘ ———————————————
LT N\

A (A i %é‘(m'

Fig. 3. Equivalent Thévenin representation of a lossless
transmission line.
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to be analyzed in the time domain (which is practically the
only possibility for nonlinear networks), by some kind of
a marching-on-in-time procedure. The transmission-line
model can easily be incorporated into such an analysis
because now, at each time step, we have the equivalent rep-
resentation of the line. Note that the EMFs of the equivalent
network are known, because they are given in terms of the
delayed modal intensities launched from the opposite line
ends (delayed by D/c,,). In order to prepare data for further
time steps, we have to find (and store) the waveforms
launched from the line ends. Thus the voltage wave
launched from the generator towards the load end is given
by

Vinc(©, 8] = [v(0, D] — [v,(0, 1)] (76)

while the voltage wave launched from the load towards the
generator end is given by

[Vref(D/ t)] = [V(Dr t)] - [Vinc(Dr t)]' (77)

Note that in the above equations [v,(0, 8] and [v;,(D, t)]
are known, while [v(0, 0] and [v(D, )] are supplied by the
procedure for solving the generator, and the load network,
and they correspond to the current time sample. Knowing
[Vind0, 0] and [v,(D, 0], we can find [gio(0, )] and (Bret
(0, 0)] from (51) and track the modes to the other line end.

The solution of nonlinear networks without memory is
reduced to solving, at each time step, a set of simultaneous
nonlinear equations, which can be accomplished by using
certain iterative techniques (e.g., the Newton-Raphson
method, or optimization methods). The solution of nonlin-
ear networks with memory is based on solving nonlinear
differential equations, which can, again, be done in a vari-
ety of ways. Perhaps the simplest, but least accurate, tech-
nique is the Euler method.

Some numerical examples of modal analysis in the time
domain are given in Section VII.

V. MobpaAL ANALYSIS IN THE FREQUENCY DOMAIN

We can use modal analysis in the frequency domain for
an arbitrary transmission line, including lines with losses
and frequency-dependent [L), [R], [B], and [G] matrices.
However, the terminal networks have to be linear and time-
invariant. Regarding the time-domain excitations con-
tained in these networks, we have to find the Fourier trans-
form of their waveforms (usually by applying the fast Fou-
rier transform) to obtain the complex amplitudes of the
waveforms in the frequency domain, at a set of discrete fre-
quencies. Each of these individual frequency components
is then considered to excite the transmission line. The modal
analysis is performed at each frequency, and thereby we
obtain the frequency response of the transmission line at
both the generator and load ends. The inverse fast Fourier
transform is then applied to these frequency responses to
find the time-domain response.

Let us consider the transmission line in the frequency
domain. We can assume that the eigenmodes propagate
along the line in a form given by exp (+ vy, x), where v, is
the propagation coefficient for the mth eigenmode. Again,
the “—*' sign in the exponent corresponds to the incident
wave, and “/+ " to the reflected wave. Note thatfor alossless
transmission line v, is purely imaginary (and equal to
Jjolcy), while for a lossy line it has both real and imaginary
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parts. Therefore, instead of (39) and (40) we now have the
phasor representations for the modal voltages and currents

V™ = {Vo1 exp (Fy,X) (78)

(™1 = UG exp (FymX) 79

where [Vg'] and [/3] are complex vectors of constants.
If we substitute (78) and (79) into (11} and (12), we obtain

1 'Ym[vm(x)] = "[Z ] [I m(x)] (80)

Fallm()] = —[YI[Vn()] @mn

and from the wave equations (23) and (24) we obtain

{ymlu] = [Z1[YI} (V] exp (FymX) = 0 82)

{vnlul - YHZBUT exp (FymX) = 0. (83)

Hence, the corresponding eigenvalue equations become
det {y2[ul — [Z][Y]} =0 (84)

det {y3{ul — [V11Z]} = 0. (85)

From either of the equations the complex eigenvalues v2,
can be computed, together with one of the complex eigen-
vectors [Va7] or [IT]. As before, if we define the matrix [S,]
as the matrix containing the complex eigenvectors of the
voltages and [S;] as the matrix containing the complex
eigenvectors of the current, they will now be related by

[S1 = Z17'[Syv1 [T (86)
where

([ = diag {yv - ", w}- 87)

The matrices {Sy]and [S;] are defined by (46) and (47), respec-
tively. Instead of the vectors [ gi,(x, )] and [g,er(x, D], defined
for the modal analysis in the time domain, we now intro-
duce the complex vectors

[Ginc®)] = [Gihe €XP (—¥1%), = * + , Ghc exp (—yax)])7  (88)
[Gret(¥)] = [Glet €XP (y1X), =+ -, GN¢ exp (yu )l (89)

where G, - - -, Giic and G, - - -, G, are complex con-
stants. The characteristic impedance of the line can now be
found as

[Z] = [Svl[S17"

= SISV '1Z)

= [YI'isamsa (90)

Assuming that the terminal networks are characterized by
their Z-parameters, (15) and (16), we obtain

[Gind = [7E1IVel + [Z1(Grer(O)] @)
[Grer D) = [771Vi + [P NGincD)] ©92)

where the modal reflection and transmission coefficients
at the generator and load ends are given by

[r81 = [Sv17"[7d 93)
(081 = [Sv]™ [oc] [Sv] 94
(77 = [Sv17"[7 (95)
o] = (Sy1 Lol (S1] ©96)

while the voltage transmission and reflection coefficients
are

rd = ZJZd + [ZD ™ (97)
lod = (Zql - ZD 24 + [ZD™ (98)
7] = ZA(Z] + (2D~ (99)
led = (2] - ZD 2] + 1ZD™". (100)

The relations between the modal voltages at x = 0 and x =
D can now be written as

[Ginc(D)] = [E][Ginc(0)] (101
[Gret(0)] = [E] [Ge(D)] (102)
where [E] is a diagonal matrix,
[E] = diag {exp (~y4D), - - - , exp (—yyD)}. (103)
Utilizing (101) and (102) in (91) and (92), we obtain
[Ginc(0)] = [7C1 [Vc] + [0C [E] [p]] [E] [Ginc(O)]
+ [pC1 [E1 71 IV (104)

[Cret (D)} = [771 Vi + [p['] [E] [Ginc(O)] (105)

whence [G;,(0)] and [G,(D)] can easily be evaluated.

Special formulas must be used to compute the line
response for zero frequency, because in certain cases one
or both of the matrices [Z] and [Y] are zero, and the eigen-
values cannot be computed. If the line is lossless, i.e., if
[R] = [0] and [G] = [0], we have

V)] = (VD)
= 1Z)(Zd + [ZD™ 'Vl + [Zd(Zdl + [z~ "V
(106)

where now all the matrices are real. If [R] # [0] and
[G1 = 0, then

V0] = [Vd — [Za(Zd] + 121 + [RID) (V] — V)
(107)
VD) = Vi1 + [ZI(Zd + [Z] + [RID) (V] - V).
(108)
When [R] = [0] and [G] # [0], then
Vo)l = (VD))
= (Zd™" + (Z17" + [C1D)""(Zel " [Vl + [Z17"IViD.

(109)

Finally, if [R] # [0] and [G] # [0], modal analysis can be per-
formed..

Knowing [G;,[(0)] and [G,(D)] it is easy to find the con-
ductor voltages at the transmission line ends as

VI0)] = [Sy){[GiacO)] + [ENGres(D)1} (110)
VDN = [SVI{[ENGincO)] + [Giei(DN}. (111

Bearing in mind that we are using the fast Fourier trans-
form to convert from the time.domain to the frequency
domain, and back, it is obvious that the voltage excitations
in the time domain must have a sufficiently long trailing
time interval where they are equal to zero. During this inter-
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val, the transmission line response should practically settle
to zéro. The reason for ensuring this is because the appli-
cation of the fast Fourier transform inherently introduces
a periodical repetition of the waveforms. So, if the settling
interval is not long enough, the responses would overlap,
yielding incorrect results.

VI. NONUNEARLY LOADED TRANSMISSION LINES

As mentioned in the previous sections, the analysis of
arbitrary nonlinear terminal networks (with or without
memory), in the general case, can be performed only in the
time domain. On the other hand, the analysis of lossy trans-
mission lines (as well as lines with frequency-dependent
parameters) should be performed in the frequency domain,
as discussed in Section V. So, in order to combine the two
cases, i.e., to design a method for analysis of lossy trans-
mission lines with arbitrary nonlinear terminal neiworks,
one must be able to combine the solutions in the two
domains. Since the transmission line is a linear hetwork, it
can be completely characterized in the time domain by its
Green’s functions, which are, in turn, obtained from the
frequency-domain analysis. These functions can be imple-
mented in atime-domain solution of the terminal networks
in a mannet shown below.

Consider a linear, passive n-port network. Suppose that
an ideal voltage generator, of EMF v;(8), is connected at the
port j, while the other ports are short-circuited. One can
solve for the currents at the network ports. All these cur-
rents can be represented in the form

@) = Y@ Viglw), k=1,---,n  (112)

where Vjo(w) is the Fourier transform of v;o(t) and Y, () are
the network Y-parameters. Let us suppose, for a moment,
that v;o(t) is a unit delta function. In that case, Vjo(w) = 1,
independently of frequency, and the currents in the time
domain are obtained as

ik(t) = igki(t) = F‘1{Yk_,-(w)} (113)

where F~' denotes the inverse Fourier transform. These
currents are referred to as the network Green’s functions.
(There are two things to be noted. First, the reference direc-
tion for the generator EMF and the current at that port coin-
cide, by convention. Second, if the network is reciprocal,
as in our case, then iy ;(t) = igu(t).)

For an arbitrary v;,(t) we have

i® = F{Yij() Vio@} = igej(® * vjo®  (114)

where ’*” denotes convolution. We now consider the same
network driven by ideal voltage generators at all the ports.
Hence, from superposition we can write

n t
it = Eo So igkjlt — 8) v;o(0) df. (115)
In the convolution integral it is assumed that all excitations
begin after t = 0. It should be noted that, by the compen-
sation theorem, the ideal voltage generators driving the
network can represent the (known) voltages at the network
ports, irrespective of what js actually connected to the ports.

Following the above approach, we would have to connect
an ideal delta-function generator between one of the trans-
mission line conductors (atone line end) and ground, short-
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circuit other line ports, perform modal analysis in the fre-
quency domain to find the conductor currents, and com-
pute their inverse Fourier transforms to obtain Green’s
functions, This should be repeated for all line conductors.

There are, however, several problems that should be con-
sidered. First, the analysis of the transmission line is usually
done only numerically, at a finite number of discrete fre-
quencies. In turn, in the time domain, Green's functions
‘must also be discretized and of finite duration. Second,
these Green’s functions must be convolved with line port
voltages, which must also be done numerically. The con-
volution turns out to be the most time-consuming part of
the present analysis, and therefore the number of samples
of Green’s functions should be kept as low as possible. This
can be a particular problem if the analysis of the response
of the line with terminal networks is to span a time interval
greater thanafew line transit times. Namely, if the line ports
are short-circuited (as they are for the computation of
Green’s functions), the line response exceeds many transit
times in duration, even for a moderately lossy line; For a
lossless line with short-circuited ports the response is of an
infinite duration! Therefore, the line Green’s functions
would have to be kept in very long registers, spanning the
same time interval as the time interval in which we would
like to analyze the response of the transmission line ter-
minated by arbitrary nonlinear networks. This is, of course,
not only a computer-storage problem, but also demands
very long execution times.

The lengths of the registers mentioned above can be kept
relatively short if the duration of Green’s functions can be
reduced to only a few line transit times. However, this is
possible only if the line is reasonably well matched. For
example, if a lossless line is terminated by perfectly matched
networks, the duration of the line response to a delta-func-
tion generator connected at one line port is only one sam-
ple for all the ports at the line end where that generator is
connected, while the response at the ports at the other end
of the line terminates after one line transit time. For lossy
lines, with moderately low losses (as normally used in prac-
tice), the situation is very similar,

Following this example, we can artificially insert at every
port (i.e., fine conductor at the generator and load ends) a
linear frequency-independent resistance so as to signifi-
cantly reduce reflections from both line ends, as compared
to the case where the ports are merely short-circuited. (A
more general approach to this problem can be found in[31].)
A good choice of these resistances is to take them equal to
the corresponding diagonal elements of the line charac-
teristic impedance matrix [Z], i.e., Z.y, assuming the line
to be lossless, i.e., by taking {R] = [0]and [G] = [0]. The trans-
mission line augmented by these resistances can be con-
sidered as a new n-port network (see Fig. 4), and its Green's
functions can be computed as described above. Thereby,
in practical cases of lossy lines, the line response (when
computing Green’s functions) is confined to about 3-6 line
transit times, and Green’s function registers have to cover
only this tilme span.

However, by introducing these resistances, we have
changed the line characteristics as seen by the terminal net-
works. To restore the original characteristics, we have to
introduce in series with the terminal network ports neg-
ative resistances, equal to —Z, as shown in Fig. 4. Note
that these resistances are frequency-independent, and thus
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Fig. 4. Equivalentrepresentation of alossy transmission line
with arbitrary terminal networks.

they do hot comphcate the tlme-domam analysis of the ter-
minal networks.

Considering now the augmented transmission line (the
line with Z 4, resistors) as a network with n = 2N ports, we
can determine Green’s functions. With these functions
known, we can relate line conductor currents to the line
port voltages v,(t) by using (115), where v;o(t) should be sub-
stituted by v,;(f). In order to distinguish between the line
ports at the generator end and at the load end, we can
rewrite (115) as

0) v,;c(6) do

N ot
ixclt) = i§1 S Pt —
N t
+ 21 So it — 0) v (0) db,
j= !
k=1,--,N (116)
N ot _
i) = i§1 So igki(t — 6) vijc(6) dé

N t
+ X So i5{t — 0 v 0) d6,

k=1---,N. (117)

In these equations, iy, is the Green’s function representing
the currentin the conductor k when the delta-function gen-
erator drives the conductor j at the same lin€ end, while

i gt corresponds to the case when the current is computed
at one line end, while the excitation is at the other end.
Obviously, due to the symmetry of the transmission Ime,
it is irrelevant which end of the line is taken as the first one
and which as the second one.

If we now connect the terminal networks augmented by
the negative resistances to the augmented transmission line
(see Fig. 4), the conductor currents and the voltages between
the junctions of Z. and —Z, and the ground are related
by (116} and (117). Note that the series combination of Z
and —-Z, essentially represents a mere short circuit, as it
must be, because from both the transmission line and the
terminal network sides we should see no change by intro-
ducing these fictitious resistances. For brevity, we shall refer
to the voltages v,(t) as the virtual terminal voltages.

In order to prepare (116) and (117) for a computer imple-

mentation, we have to replace the integrations by sum-
mations. Thus we obtain

N g

iclg) = 2 P§o ig(@ — P) viclp) At

N

Z 'gk,(q p) viu(p) At,

k_—_1,...’N (118)
N g

i@ = % 2 ig(q = p) violp) At

N ¢
+ 3 qZ izy(@ = p) viu(p) At,

k=1,...,N (119)

where the argument g denotes the time instant, gaAt, at
which we sample the voltages and currents. We can modify
the sums on the right-hand sides of (118) and (119) by
extracting the terms for p = g. Noting that iz;(0) # 0, and
ig;(0) = 0 (due to the line delay), we have

N gq-1

ikG(q) Z '5[:/(0) Vv,c(Q) At + 2 Z lgk;(q P) Vylc(P) At

N q-1

+ l§| P§0 ig;q(q - p) VV[L(P) At, k = 1’ v, N

(120)
N g-1

N.
inlq) = i§1 ig10) vyu(q) At + ,~§1 Eo igi(q — p) vyc(p) At

N g-
i IZ: g ngl(q p) Vv;L(P) At, k =3 1’ s, N.

(121)

Note that the first surn in either (120) or (121) contains virtual
terminal voltages only for t = gAt, i.e., at the same time
instant for which the current on the left-hand side is com-
puted, while the second (double) sum contains only pre-
vious values of the voltageés, i.e., the history of the network.
Noting thati;(0)are constants for agiventransmission line,
the first sum can be represented for k =1, - - -, Nin the
form [G,4][v,), where [v,] is a column matrix containing the
virtual terminal voltages, and [G,4] is an N X N square
matrix, the-elements of which are iZ;(0). The matrix [G,q]
can be considered as a conductance matrix giving the
instantaneous (dynamic) input conductance to the trans-
mission line, as seen from the virtual terminals. The double
sum represents a current. It can be considered as the cur-
rent of a current generator, the current of which does not
depend on the instantaneous values of the transmission
line currents and voltages, but rather only on their previous
values. Again, if we consider k = 1, - - - , N, these inde-
pendent currents can be represented by a column matrix
{l], where the subscript “c” points out that these currents
are obtained by convolving the Green's functions and the
virtual terminal voltages. Thus (120) and (121) can be written
in a shorter form as

lic(@) = [Gual viclq)l + licgtg ~ 1} (122)
lil@] = [Cugl vu(@) + liqlg — D) (123)
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We can now solve (122) and (123) for the virtual voltages at
t = gAt to obtain

ool = (Gl lic@)] — [Gual 'licclq = D1 (124)
(@ = (Gl i@} — [Guad ™ "lialq = D] (125)

where [ig] and [7,] are column matrices containing terminal
currents. The real (true) terminal voltages at the transmis-
sion line ports can be obtained as

ve(@l = vglg) + diag (—ZJlic(q)]

= [Rllic(@)] — [Gyal licclg = N (126)
vl = [vu(@] + diag (-ZJ[iy(q)]

= [RgllikgN — [Gual "licslg — D] 127)

where diag (—~Z ) isa diagonal matrix the elements of which
are —Z,, and

[R4] = [G\gl™" + diag (—Z) (128)

is the dynamic input resistance matrix of the line, as seen
from the terminal networks. The term —[G,4]1~"[i.] can be
considered as the line open-circuit voltage vector. Hence,
we have managed to obtain the line equivalent instanta-
neous Z-parameters, as seen by the (nonaugmented) ter-
minal networks. It is worth noting that the dynamic input
resistance matrix is time constant. For a lossless line with
frequency-independent parameters this matrix equals the
characteristic impedance matrix.

Once we have determined the equivalent line Z-param-
eters in the time domain, our analysis becomes similar to
the analysis of the response of a lossless line, described in
Section IV. The only difference between the two cases is in
the actual computation of the open-circuit voltage vectors:
in Section 1V they were computed by tracking the mode
propagation in the time domain, while here they are eval-
uated by using the convolution. Therefore, everything
regarding the way of combining the solutions of the trans-
mission line and the terminal networks remains valid for
lossy transmission lines, and shall riot be repeated here.

Vil. EXAMPLES

To illustrate the theory presented above, we here con-
sider a few examples.

The first example is the transmission line consisting of
two signal conductors and a ground plane, schematically
{epresented in Fig. 5. The line is assumed to be 304.8 mm
ong, with Ly = Ly = 494.6 nH/m, L, = Ly = 63.3 nH/m,
By = By = 62.8 pF/m, and By, = By; = —4.94 pF/m. At one
port, thelineis excited by a voltage generator, of an internal

soNn 020
W
Elt)
000 €102

Fig. 5. Example of a transmission line with two signal con-
ductors and linear resistive terminal networks, excited by
a voltage generator.
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impedance of 50 ©2, the EMF of which is assumed to be a
ramp, continued by a steady voltage, as shown in Fig. 6. This
EMF approximates the leading edge of a pulse. The other
conductor at the generator end is connected to the ground
through a 100-Q resistor.

Let us first assume that the line is lossless, and that at the
load end the conductors are connected to the ground
through 102-Q resistors. The line response in this case is
presented in Fig. 7, and it was obtained by the modal anal-
ysis in the time domain. The same case was also analyzed
by the time-stepping technique, by utilizing 50 T-cells, and
with a time step At = 0.1 ps, and by the modal analysis in
the frequency domain. In the latter case, 1024 samples were
taken in the time domain, at a sampling frequency of 80
GHz. Since the fast Fourier transform deals with periodi-
cally repeated waveforms in the time domain, the excitation
function had to be modified so as to return to zero after 6
ns. The interval at which this function was forced to be zero
(i.e., from 6 to 12.8 ns) was chosen so that the line response
settled down reasonably well before the next ramp started
(at 12.8 ns). The line responses obtained by these two tech-
niques differ appreciably from the results computed by
using the modal analysis in the time domain only for the
voltage at the load end of the parasitic (nondriven) con-
ductor. They are shown in Fig. 8. Note the oscillations in the
response obtained by the time-stepping solution (Fig. 8(a)).
The ringing frequency is directly proportional to the num-
ber of cells utilized in the model. In the response obtained
by modal anlaysis in the frequency domain (Fig. 8(b)) one
can note tails of the preceding pulses, as well as small oscil-
lations due to the finite bandwidth of the FFT.

Next we consider the same transmission line as above,
but with losses, and terminated at the load end in two non-
linear networks, sketched in Fig. 9. The nonlinear resistor
V-I characteristics was assumed to be of the form

1(V) =10 "™ — 1) nA (129)

where V; = 25 mV, and the differential capacitance of the
nonlinear capacitor was assumed to be of the form [32]

5 pf Va2V,
—=— + %V pF 130
bo-v, ¢ P dEL

where V,, is expressed in volts. Each nonlinear network is,
essentially, a simplified model of a semiconductor diode.
The line resistances are assumed to vary proportionally to
the square root of frequency (the skin-effect variation), and
their values at 1 MHz are assumed to be R;; = R,, = 100
/m and R;; = Ry; = 10 @/m. The elements of the conduc-
tance matrix are assumed to be frequency-independent and
equal to Gy = G = 1 mS/m and G;; = Gy = —0.1 mS/m.
The line response in this case is shown in Fig. 10, and it cor-
responds to taking a time step At = 10 ps in the convo-
lution, and 1024 points in the frequency domain when com-
puting Green’s functions.

As the second example, we consider a transmission line
having five signal conductors and aground plane. The cross
section of the line is sketched in Fig. 11. The line matrices
[L], (B], [R], and [G] were computed using the techniques
described in [33]-[37), yielding frequency-dependent val-
ues of these matrices. The line length was assumed to be
288 mm. The line was excited at the generator end of con-
ductor number 1, by a 50-2 generator, the EMF of which is

Cn(vn) =
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Fig. 6. Electromotive force of the voltage generator of Fig. 5.
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Fig. 7. Voltage waveforms at the terminals of the lossless transmission line of Fig. 5
obtained by modal analysis in time domain. ——————— voltages at the generator end;
— - - — voltages at the load end.
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Fig. 8. Voltage waveforms at the terminals of the parasitic line. of Fig. 5 obtained by (a)
time-stepping solution, and (b) modal analysis in the frequency domain. ————— volt-
ages at the generator end; — - - — voltages at the load end.
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Fig. 9. Nonlinear RCload network for the transmission line
of Fig. 5.
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given by Fig. 12. All the other ports are connected to the
ground through 50-Q resistors. The response of the line was
obtained by using modal analysis in the frequency domain,
with 2048 time samples and a sampling frequency of 100
GHz. These results are presented in Fig. 13, together with
experimental data for the same line. These results were
obtained with a setup consisting of a Tektronix 7854 sam-
pling oscilloscope, an 852 pulse generator, 54 and S6 sam-
pling heads, and other- auxiliary equipment, providing a
bandwidth.of 10 GHz. For a detailed description of the
equipment refer to [38].
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Fig. 10. Voltage waveforms at the terminals of the lossy transmission line of Fig. 5, ter-
minated in the nonlinear RCload network of Fig. 9. ——————— voltages at the generator
end; — - - — voltages at the load end.
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Fig. 11.  Sketch of the cross section of a microstrip transmission line with five signal con-
ductors. All dimensions are in millimeters.
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Fig. 13. Voltage waveforms at the terminals of the lossy transmission line of Fig. 11, ter-
minated in 50-Q resistors at all ports. Voltages at the generator end: —— theory;
— -— experiment. Voltages at the load end: — - - — theory; — - — experiment.
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Very good agreement between the theoretical and exper-
imental results can be observed. The crosstatk between the
conductors at the generator end is relatively small, because
the coupling between the lines is loose. However, the cross-
talk atthe load end is significant, and results in sharp spikes.
(Other spikes, of an opposite polarity, appear later, due to
the trailing edge of the excitation waveform.) This crosstalk
is due to the different velocities of propagation of the line
eigenmodes. it is important to note that this crosstalk will
increase if the line length is increased, or if the rise time of
the pulseisdecreased, up to acertain point, when the wave-
form of the crosstalk waveform becomes similar to that of
Fig. 7 (at the load end of the parasitic line). After that, the
crosstalk remains practically constant in amplitude.

Inthedesign of certain computer buses, anumber of con-
ductors grounded at both line ends are introduced, with
the intention to reduce crosstalk. In order to justify this
practice, we have considered the same transmission line as
above, but we have short-circuited the conductors number
2 and number 4 to the ground at the generator end and at
the load end. The voltage waveforms at the driven port and
at the other ports, terminated in 50-Q resistors, are given in
Fig. 14. Comparing these diagrams to Fig. 13 we clearly see
that the crosstalk at the load end has remained practically
unchanged, while the crosstalk at the generator end has
significantly increased! This has a very simple explanation.
Namely, the presence of short-circuited conductors gives
rise to a total of five eigenmodes (as opposed to three, as
would be in the case if only conductors number 1, 3, and
5 were present). The dielectric of the line being inhomo-
geneous, these modes have different velocities of propa-
gation. In the case where conductors number 2 and 4 are
short-circuited to the ground, the line is poorly matched at
both ends, and thus the waves are strongly réflected, which
causes a crosstalk at the generator end after two line transit
times. In contrast, if conductors number 2 and 4 are ter-
minated in 50-Q resistors, the line is relatively well-matched,
and the reflection is negligible. Note that the waveforms of
Fig. 14 are poliuted by the tails of the previous pulses intro-
duced by the FFT.

Yet another interesting fact is that increasing the sepa-
ration between the lines reduces only slightly the crosstalk
for the structure shown in Fig. 11. Let us consider the line
shown in Fig. 11, but with conductors number 2 and 4
“deleted,” i.e., a line that consists of only three signal con-
ductors and a ground plane. Assuming the line ports to be
terminated in 50-Q loads, and keeping the same excitation
as before, one obtains the line response shown in Fig. 15.
Note that the crosstalk between adjacent lines (number 1
and 3 in the present case) at the generator end is smaller
than for the previous case (for conductors number 1 and
2, as shown in Fig. 13). The reason is the smaller coupling
between the adjacent lines, due to an increased distance
between them. However, the crosstalk at the load end has
remained practically unchanged. The explanation for this
is simple—this crosstalk is due, in its major part, to the intra-
modal dispersion (different modal propagation velocities),
and this dispersion changes very slowly with increasing dis-
tance between the conductors. Only when the separation
between the conductors becomes very large in terms of the
conductor height above the ground plane will the intra-
modal dispersion become small. However, such a case

760

seems to be impractical, and a much better remedy would
be to provide a homogeneous dielectric for the bus.

Vill. ConNCLUSIONS

Evaluation of the time-domain response of multicon-
ductor transmission lines is of great importance in the anal-
ysis of crosstalk in fast digital circuit interconnections, as
well as in the analysis of power lines.

In this paper, a few techniques were described which are
useful for computation of the line response. We have
assumed that the line circuit-theory parameters (i.e., the [1),
[Bl, [R], and [G] matrices) are known, either from experi-
mental data, or from an electromagnetic field analysis.

Starting from these quasi-TEM parameters, the telegra-
pherequations can be written for the multiconductor trans-
mission line, and the wave equations can be derived.
Together with any of these equations, a set of initial and
boundary conditions must be defined to complete the set
of equations for the line analysis.

The simplest method for evaluation of the time-domain
response is a time-stepping solution of the telegrapher
equations. This technique is based on discretizing the
telegrapher equations in space and time, and it is equiv-
alent to solving a lumped-circuit equivalent to the trans-
mission line by the Euler method. The method is simple to
implement on a computer. However, in order to obtain a
good numerical solution, very fine subdivisions in both
space and time are required, which make this procedure
less efficient than the other methods presented in this
paper. In addition, one has to carefully choose the time step,
in order to provide a numerically stable solution. The
advantage of the method is that it can easily be incorpo-
rated into the analysis of terminal networks, which can con-
tain nonlinear elements, and it can treat lossy transmission
lines, however only with frequency-independent param-
eters.

Modal analysis in the time domain is based on an eigen-
value equation which can be derived from the wave equa-
tion. This technique can only be applied to lossless lines
(with frequency-independent parameters), but it is the fast-
est technique, and being performed in the time domain, it
can easily be interfaced to the analysis of terminal networks
(which can contain nonlinear elements). The line eigen-
modes propagate along the (lossless) line without disper-
sion (assuming the quasi-TEM mode of propagation only),
and for the tracking of these modes one has to store only
samples of the line voltages at the two terminals, overatime
interval equal to the line transit time.

Modal analysis in the frequency domain is similar to the
previous technique, except that it is performed in the fre-
quency domain, This technique can treat lossy lines (i.e.,
it can include skin-effect and dielectric losses), which, gen-
erally, have frequency-dependent parameters. However,
the terminal networks must contain only linear elements,
because nonlinear networks cannot, in general, be ana-
lyzed in the frequency domain. The Fourier transform (more
precisely, the fast Fourier transform) is used to change
between the time domain and the frequency domain. This
technique is less efficient with regard to the CPU time than
the modal analysis in time domain, but, usually, it is more
efficient than the time-stepping solution.
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Fig. 14. Voltage waveforms at the terminals of the lossy transmission line of Fig. 11, with
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end; — - - — voltages at the load end.
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In the analysis of digital circuits, the terminal networks
are often nonlinear, and line losses cannot be neglected if
the line length is relatively large. The last technique pre-
sented in this paper is capable of treating such generai cases.
It is based on an evaluation of line Green’s functions (i.e.,
line responses to delta-function excitations). In order to
make the computation of these functions efficient, the line
should be terminated in suitable resistances, which make
the line impulse response settle down fast, thus requiring
a relatively short storage for Green's functions to expedite
the computations. Green’s functions are evaluated by using
the modal analysis in the frequency domain, and the fast
Fourier transform. Green's functions are then convolved
with the line port voltages under the assumption that real
terminal networks are connected to the line. This method
can treat the most general case of quasi-TEM multicon-
ductor transmission lines with arbitrary terminations, but
it is substantially slower than the modal analyses, and
slightly superior to the time-stepping solution.

Finally, examples are given to illustrate the various tech-
niques for the multiconductor transmission line analysis.
For a given lossless transmission line with two signal con-
ductors, the response is evaluated by using all the present
techniques. The results compare very well with each other.
Modal analysis in the time domain gives the sharpest wave-
forms, the convolution technique is next, modal analysis
in the frequency domain yields small oscillations in the
response (due to aliasing which is inherent to the fast Fou-
rier transform), and waveforms obtained by the time-step-
ping solution have the largest spurious oscillations, The
second example is a transmission line with five signal con-
ductors made by a printed-circuit technique. The response
of this line was both computed and measured, and the two
sets of results agree very well. Crosstalk between the con-
ductors was considered. It was shown that the crosstalk at
the near (generator) end is due to the coupling between the
lines, and it decreases when the line separation is increased.
Crosstalk at the far (load) end is primarily due to the intra-
modal dispersion (i.e., different group velocities of the line
eigenmodes), and it can most efficiently be reduced by mak-
ing the line dielectric homogeneous. Of course, crosstalk
also depends strongly on the terminations at both line ends.
It was also demonstrated that insertion of end-grounded
conductors between the signal conductors does not reduce
the crosstalk at the far end at all, and may significantly
increase the crosstalk at the near end.
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