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Abstract 

Temporal leakage occurs when the time-domain response of a linear electromagnetic system is computed 

from frequency-domain data using the inverse discrete Fourier transform. Although the temporal leakage 

occurs in most practical cases, this phenomenon is not recognized in the literature covering 

electromagnetics, antennas, and microwaves. The purpose of the paper is to demonstrate and explain the 

temporal leakage. 
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1. Introduction 

Various linear time-invariant electromagnetic systems are most conveniently analyzed in the frequency 

domain because there exist mature computational techniques (e.g., [1]) and related software (e.g., [2, 3]). 

Also, most measurements of antenna and microwave systems are performed in the frequency domain (using 

vector network analyzers), yielding a discrete set of frequency-domain data. In order to obtain the time-

domain response of such systems, the inverse discrete Fourier transform (inverse DFT) is often used (e.g., 

[4]), which is implemented as a fast Fourier transform (FFT) algorithm. In the application of the DFT, an 

apparently noncausal response can be obtained in the time domain, in spite of careful modeling in the 

frequency domain or carefully calibrated measurements. This unexpected response appears in the form of 

fast oscillations that occur before a sharp edge of the physically meaningful time-domain response. 

The same problem also occurs in the analysis of electrical circuits. An example is shown in Fig. 7 of 

[5], where the noncausal oscillations are mistakenly attributed to the Gibbs phenomenon. However, the 

problem is actually associated with an inherent feature of the DFT, which is referred to as the “temporal 

leakage” [6-11]. This phenomenon is mentioned only in very few references, away from the 

electromagnetic community, although its counterpart, the “spectral leakage”, is extensively elaborated in the 

literature (e.g., [12, 13]). 

The purpose of this paper is to show some typical cases where the temporal leakage occurs in the 

electromagnetic analysis and measurements, and give mathematical explanation of the phenomenon. 

Consequently, in Section 2 the discrete Fourier transform is briefly revisited, in Section 3 the mathematical 

background of the temporal leakage is elaborated, and in Section 4 several examples are given illustrating 

this phenomenon. 

2. Discrete Fourier Transform 

The DFT can be introduced by considering a periodic sequence of equispaced Dirac’s delta-functions 

(impulses) in the time domain, )(tδ , and exactly evaluating the corresponding Fourier transform, which is 

also a periodic sequence of equispaced impulses. The proof is given below. This approach is somewhat 

unusual, but it is useful for explaining the temporal leakage and some other peculiarities of the DFT. 

Consider a sequence of N impulses in the time domain (temporal functions), at time instants 

( ) tNtt ∆−∆∆ 1...,,2,,0 , where t∆  is the time step and TtN =∆ . The amplitudes of the impulses are 

110 ...,,, −Nxxx . This sequence is periodically repeated with the period T. Mathematically, this sequence can 

be defined on the interval Tt <≤0  as 
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( )∑
−

=
δ ∆−δ=

1

0

)(
N

n
nT tntxtx , (1) 

and then it is periodically repeated using ( ) ( )txlTtx Tδδ =+ , where l is an arbitrary integer. Alternatively, we 

can write 

( ) nlNn
n

n xxtntxtx =∆−δ= +

+∞

−∞=
δ ∑ ,)( . (2) 

The sequence ( )txδ  can also be represented in terms of the comb function, as follows. The comb 

function is a periodic train of impulses, with the period T:  

( )∑
+∞

−∞=

−δ=∆
m

T mTtt)( . (3) 

The function ( )txδ  can be expressed as a sum of interleaved comb functions, which are shifted for tn∆ , 

1,...,0 −= Nn , as  

( ) ( )∑
−

=
δ ∆−∆=

1

0

N

n
Tn tntxtx , (4) 

where each comb function is multiplied (weighted) by nx . 

We now evaluate the Fourier transform (Fourier integral) of ( )txδ . Since ( )tT∆  is a periodic function, it 

can be expanded in the Fourier series. The coefficients of the series are ( )
T

tt
T

c
T

T

T

kt

k

1
de

1 2/

2/

j2

=δ= ∫
−

π−
, where 

k is an integer, ( )+∞∞−∈ ,k , and j is the imaginary unit, so that ( ) ∑
+∞

−∞=

π

=∆
k

T

kt

T T
t

j2

e
1

. On the other hand, the 

Fourier transform of T

ktj2

e
π

 is 






 −δ
T

k
f . Hence, the Fourier transform of ( )tT∆  is  

( ) ( )fffkff
T

k
f

T f
kk

∆

+∞

−∞=

+∞

−∞=

∆∆=∆−δ∆=






 −δ ∑∑
1

,  (5) 

where 
T

f
1=∆ . It is also a comb of delta-functions, but in the spectral (frequency) domain, with the 

spectral-domain period f∆ . 

The Fourier transform of each comb function in (4) can be obtained from (5) by using the shift theorem, 

i.e., it is given by ( ) ( ) ( )∑∑
+∞

−∞=

π−+∞

−∞=

∆π−∆π−
∆ ∆−δ∆=∆−δ∆=∆∆

n

N

kn

k

tfntfn
f fkfffkffff

j2
j2j2 eee  because 



> < 

 

5 

( ) ( ) ( ) ( )0gffgf δ=δ , where ( )fg  is an arbitrary function defined at 0=f  and continuous at 0=f , and 

N

kn
tfnk

j2
j2 ee

π−∆∆π− = , because 
N

ft
1=∆∆ .  

By summing the Fourier transforms for all comb functions, a sequence of weighted delta-functions in 

the spectral domain is obtained. Thereby, each delta-function is multiplied by 

∑∑
−

=

π−−

=

π−
∆==

1

0

j21

0

j2
ee

1 N

n

N

kn

n

N

n

N

kn

nk xfx
T

X , ( )+∞∞−∈ ,k . Since n is an integer, we have 
( )

N

kn

N

nNk
j2j2

ee
π−+π−

= , so 

that kX  is a periodic sequence of complex numbers, with the basic period N. Hence, it is sufficient to 

consider kX  only on the basic period, i.e., for 1,...,0 −= Nk , in the same way as it is sufficient to consider 

nx  only for 1...,,1,0 −= Nn . 

Following a similar derivation, we can show that ∑∑
−

=

π−

=

π

∆
=∆=

1

0

j21

0

j2
e

1
e

N

k

N

nk

k

N

k

N

nk

kn X
fN

Xtx .  

Hence, we have obtained formulas for the physical (denormalized) discrete Fourier transform (DFT) 

and the corresponding inverse discrete Fourier transform (IDFT):  

∑
−

=

π−
∆=

1

0

j2
e

N

n

N

kn

nk xfX , 1...,,1,0 −= Nk , (6) 

∑
−

=

π

∆
=

1

0

j2
e

1 N

k

N

nk

kn X
fN

x , 1...,,1,0 −= Nn . (7) 

These transforms relate the amplitudes of a periodic sequence of impulses in the time domain (nx ) to the 

amplitudes of a periodic sequence of impulses in the frequency domain ( kX ). Note that relations (6) and 

(7) are exact, and that the sequences of pulses in both domains are infinite and periodic. 

The normalized forms of the DFT and IDFT are obtained by artificially taking 1=∆f  (also neglecting 

the units), so that  

∑
−

=

π−
=

1

0

j2
e

N

n

N

kn

nk xX , 1...,,1,0 −= Nk , (8a) 

∑
−

=

π
=

1

0

j2
e

1 N

k

N

nk

kn X
N

x , 1...,,1,0 −= Nk .  (8b) 

The normalized forms are practically the only ones found in the literature, and the available FFT algorithms 

are based on (8a) and (8b). From now on in this paper, we consider only the normalized forms. 

If (1) represents a physical time-domain signal, then the amplitudes 110 ...,,, −Nxxx  are real numbers. 

The corresponding spectrum has a conjugate symmetry. Hence, the infinite sequence of complex numbers 
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{ }kX  has a conjugate symmetry: *
kk XX =−  for any integer k. Assuming N to be even, due to the periodicity 

of { }kX , this sequence on the basic period looks as follows: 

{ } { }*
1

*
12/2/12/10112/2/12/10 ,,,,,,,,,,,,,, XXXXXXXXXXXX NNNNNNN ………… −−−+− = . (9) 

The terms 2/NX  and 0X  are purely real due to the conjugate symmetry of { }kX . If N is odd, the middle 

(purely real) term in this sequence does not exist, but 0X  is still purely real.  

Hence, when analyzing or measuring an electromagnetic system in the frequency domain and evaluating 

the time-domain response using the IDFT, one should properly define the sequence { }kX  in (8b) in order to 

obtain real-valued elements of the sequence { }nx . The first part of { }kX  is taken from the computed or 

measured data, and the second part is defined based on the conjugate symmetry, as in (9). 

In practice, the basic application of the normalized DFT is to approximately evaluate the spectrum of a 

real, continuous-time, nonperiodic signal ( )tx . The signal ( )tx  might be an electric field, voltage, current, 

etc. In numerical applications, we can deal only with the values of the signal at a finite number of discrete 

time instants. 

This application of the DFT can be introduced in two ways. One way is to deal with the samples of the 

original continuous-time signal and the other way is to replace the original signal by a discrete-time signal. 

In both cases, we assume that the signal is almost time-limited to the interval [ )Tt ,0∈ .  

Following the first approach, we take the samples (signal values) at N equispaced time instants, 

tntn ∆= , 1...,,1,0 −= Nn , i.e., we take ( )tnxxn ∆= . We approximate the Fourier integral of ( )tx  by a sum 

of “rectangles”, i.e., ( ) ( ) ( ) ttnxttxttx tfn
N

n

T
ftft ∆∆≈≈ ∆π−

−

=

π−
+∞

∞−

π− ∑∫∫
j2

1

00

j2j2 edede . We further assume that the 

spectrum of ( )tx , ( )fX , is almost frequency-limited to the interval 





∈
T

N
f

2
,0  and we consider this 

spectrum only at discrete frequencies 
T

k
fkf k =∆= , 12/,...,1,0 −= Nk  (for N even). Knowing that the 

spectrum has a conjugate symmetry, we thus effectively consider N discrete values of the spectrum. Since 

N

nk
tnf k =∆ , we obtain ( ) ( ) N

knN

n

tnxtfkX
j21

0

e
π−−

=
∑ ∆∆≈∆ . This sum is the normalized DFT, so that 

( ) ktXfkX ∆≈∆ . Note that to obtain a proper approximation of the spectrum, we need to perform the 

multiplication by t∆ . 
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Using the normalized IDFT, we obtain the values nx  in a similar way as ( ) ∑
−

=

π
∆≈∆

1

0

j2
e

N

k

N

nk

kXftnx . 

Hence, nfxNtnx ∆≈∆ )( . Note that 1=∆∆ ftN , so that this product is absorbed in the sequence of the direct 

and inverse DFT1. 

Assuming that N is even, the spectral components 12/10 ...,,, −NXXX  approximate the values of the 

spectrum ( )fX  of the signal ( )tx  at a set of discrete frequencies, i.e., ( )fkX
t

X k ∆
∆

= 1
, 

12/...,,1,0 −= Nn . 

According to the second approach to using the DFT to approximately evaluate the spectrum of the 

signal )(tx , we replace the continuous-time signal ( )tx  by the discrete-time signal ( ) ( ) ttxtx T ∆= δdt , where 

( )tx Tδ  is given by (1). The need for multiplication by t∆  can be justified in two ways. First, the unit for the 

delta-function )(tδ  is 1s− , so that we have to restore the original unit for the signal ( )tx . Second, we want 

( )tx  and ( )txdt  to have approximately identical spectra, so that ( )tx  and ( )txdt  should have practically equal 

integrals2 over any interval whose length is t∆ . Following this approach, upon evaluating the Fourier 

integral, we again obtain the spectral samples to be ( ) ktXfkX ∆≈∆ .  

In conclusion to this section, we point out that the DFT is an exact transform that maps a periodic 

sequence of impulses in the temporal domain into a periodic sequence of impulses in the spectral domain. 

However, when used to analyze a continuous-time signal (or a function whose temporal samples are 

known), the DFT only approximately evaluates spectral samples of such a signal. Similarly, the IDFT only 

approximately evaluates temporal samples of a function whose spectral samples are known. Thereby, we 

perform discretization both in the time domain and in the frequency domain. Hence, by applying the DFT, 

we always introduce an aliasing error because a continuous-time function cannot be limited both in the time 

domain and in the frequency domain. However, if we know that the function under consideration is 

practically limited to the time interval ( )max,0 t  and also practically limited to the frequency range ( )max,0 f , 

the application of the DFT/IDFT yields useful results. 

 
1 Some FFT algorithms use identical formulas for the direct and inverse FFT, apart for a sign change in 

the exponent. In such cases, the inverse DFT does not include the division by N, so that ( ) nfxtnx ∆≈∆ . 

2 Note that ( ) 1d =δ∫
ε

ε−

tt  for any 0>ε . 
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Care should also be taken when applying the DFT to the analysis of high-frequency electromagnetic 

problems, which always involve a delay. If the delay exceeds the period T and/or if the response does not 

settle down to zero fast enough, the response from one time window will penetrate into the subsequent time 

window, which will appear as a wrap-around of the response. A particular example where this periodicity 

causes trouble is the evaluation of the step response (the response to the Heaviside function). When 

applying the DFT, the Heaviside function must be replaced by a rectangular pulse, which jumps from 0 to 1 

at the beginning of the time window and returns to zero around the middle of the same time window. The 

duration of the time window must be sufficient to allow the response to practically vanish within this 

window. 

3. Temporal Leakage 

The simplest, yet illustrative case where one can get acquainted with the temporal leakage is a delay 

line. Such a line can be a model of an ideal matched transmission line. If the line is excited by an impulse 

located at 0=t , i.e., by ( )tδ , and if the delay is τ , the signal at the output of the line is given by ( )τ−δ t . 

The objective is to evaluate this response using the normalized DFT. Since it is assumed that the impulse is 

located at 0=t , we have 10 =x , 0=nx , 1...,,1 −= Nn . We assume that ( ) tN ∆−<τ< 10 . Applying (8) 

yields the frequency-domain samples, 1=kX , 1...,,1,0 −= Nk . Next, the delay is expressed as tp∆=τ  

( 10 −<< Np ) and this delay is simulated in the spectral domain by multiplying kX  by ( )Nkp /j2exp π− , 

12/...,,0 −= Nk . (This simulation mimics the analysis of an electromagnetic system or a circuit in the 

frequency domain.) The sample 2/NX  is peculiar because it must remain purely real. Hence, 2/NX  is 

multiplied only by ( ){ }pjexpRe π− . The remaining samples, for 1...,,12/ −+= NNk , are filled according 

to (9). Thereafter, the inverse normalized DFT (8b) is applied.  

If p  is an integer, a clean response is obtained using MATLAB [14], as shown in Fig. 1 for 150=p . If 

this is not the case (e.g., 5.300=p ), the response contains oscillations (temporal leakage). 

The temporal leakage can be explained by analytically evaluating the sum in (8b). Due to the conjugate 

symmetry in the spectral domain, one can write 

{ }
















+
















+= −π

−

=

ππ−

∑ )j(

1
2

1

j2j2

eReeeRe21
1 pn

N

k

kn
N

kp
N

n N
x . (10) 

After summing the series in (10) and some manipulations, given in the Appendix, the result becomes  
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πα
πα=

tan

sin1 N

N
xn , (11) 

where 
N

pn −=α . Considering nx  as a function of α , it has a global maximum for 0=α . This maximum 

is 1.  

 

 

Fig. 1.  Impulse excitation of a delay line and computed response (for 512=N ) when 150=p  and 

5.300=p . 

 

However, p  is an arbitrary given constant, whereas n  is an integer. Hence, the global maximum can be 

attained only if p  is also an integer, when the maximum occurs for pn =  ( 1=px ). In that case, all other 

samples are 0=nx , pnNn ≠−= ,1,...,0 , and a clean response is obtained, which is an impulse delayed for 

tp∆=τ  after the excitation. If p  is not an integer, the temporal leakage occurs. When 1<<α , i.e., in the 

vicinity of the delayed impulse, πα≈παtan , so that  

( )
( ) ( )pn

pn

pn

N

N
xn −=

−π
−π=

πα
πα≈ sinc

sinsin
.  (12) 

The largest sample is the one whose index n  is closest to p , but now 1<nx . The largest leakage 

occurs if 5.0+= mp , where m  is an integer. In that case, there are two largest samples, whose value is, 
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approximately, 6366.0
2 ≈
π

. They are surrounded by two negative samples whose value is, approximately, 

2122.0
3

2 −≈
π

− , which can be verified in Fig. 1. 

The temporal leakage can also be explained in the following way. Let us consider the sequence (8b). If 

we want to delay this sequence for τ , all spectral components kX , ( )+∞∞−∈ ,k , must be multiplied by 

( )τπ− fj2exp . This multiplication modifies only the phase of kX  (Fig. 2), by reducing it by τπf2 , which is 

plotted by the line denoted “natural”. However, in the general case, the resulting spectral components do 

not form a periodic sequence any more. 

When we apply the DFT to evaluate the delay, we modify the phases of only the samples for 

1,...,0 −= Nk , which belong to the basic spectral interval. (In Fig. 2, it is assumed that 8=N .) This phase 

shift is denoted by “DFT basic interval”. Thereafter, we periodically repeat the samples from this basic 

interval. Consequently, the phase shift is periodically repeated as denoted in Fig. 2 by “DFT periodically 

repeated”. Note that the phase shift of the samples for 12/,...,0,...,12/ −+−= NNk  coincides with the 

natural phase shift. 

 

 

Fig. 2.  Illustration of phase shifting when using DFT, which causes the temporal leakage. 
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Modifying the phase shift by an integer multiple of π2  does not change anything. Hence, we can try to 

overlap the DFT phase shift with the natural phase shift. (In the example shown in Fig. 2, the attempted 

shift is π2 , viz. π− 2 .) In the general case, the overlapping will not be possible and phase jumps would 

occur, as illustrated in Fig. 2. These jumps are the sources of the temporal leakage. 

The only exceptions are cases when the natural phase shift at the sample N  is an integer multiple of π2  

(i.e., the delay τ  is an integer multiple of t∆ ). In that case, the result obtained using the DFT exhibits a 

perfect delay. An example is the natural delay labeled “perfect” in Fig. 2. 

4. Examples 

As the first example in this section, Fig. 3 shows the response of a delay line to a rectangular pulse 

whose width is t∆50 . The temporal leakage occurs around the pulse edges if the delay is not an integer 

multiple of t∆ . In the response for 5.300=p , interference occurs between the ringings generated at the two 

transients, due to a small pulse width. If the pulse is sufficiently wide, the interference would be negligible. 

The maximal overshoots and undershoots occur when 4.0+≈ mp  or 6.0+≈ mp , and they amount to 

about 14% of the edge height. Note that the oscillations associated with the Gibbs phenomenon are given in 

terms of the sine integral function [15]. The resulting undershoots and overshoots at the transients would be 

about 9% of the edge height, i.e., smaller than those associated with the worst-case temporal leakage. The 

temporal leakage and the Gibbs phenomenon look similar, but they have different causes. The temporal 

leakage arises due to the discretization of a continuous signal, while the Gibb's effect arises due to limiting 

the bandwidth of the signal. 
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Fig. 3.  Rectangular-pulse excitation of a delay line and computed response (for 512=N ) when 150=p  

and 5.300=p . 

 

As the next example, we consider two wire antennas, separated by a distance of 2.1 m. The measured 

and simulated structure consists of a mm225  long folded dipole, which acts as a transmitting antenna (Tx), 

and eight mm80  long monopoles placed along the diagonal of an m 1  m1 ×  aluminum plate (Fig. 4). The 

first dipole acts as the receiving antenna (Rx), while the other 7 monopoles are terminated in Ω 50  loads 

[16]. The response was obtained by calculating the scattering parameter 21s  using WIPL-D [3] and by 

measuring 21s  (in the frequency domain) using a vector network analyzer and performing the IDFT. Fig. 5a 

shows the impulse response. The noncausal ringing caused by the temporal leakage (for ns 1.7<t ) is 

significantly reduced if the separation between the antennas is increased by just 25 mm (Fig. 5b) since this 

increase accidentally introduces a proper additional time delay and the corresponding phase shift. 
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Fig. 4.  Analyzed system with two antennas 2.1 m apart.  

 

 

Fig. 5.  (a) Impulse response of two antennas shown in Fig. 4 and (b) the response when the distance 

between the antennas is increased by 25 mm. 
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Finally, Fig. 6a shows the measured and simulated step response of a differential-mode fast digital-

signal link. The link encompasses three multilayer printed-circuit boards and corresponding connectors. 

The simulated response was computed in the frequency domain using the model of the dielectric parameters 

[17] along with the model of the per-unit-length resistance and inductance [18], which guarantee a causal 

response. The latter model includes the edge effect, the proximity effect, the skin effect, and the effect of 

surface roughness. The model of the link also includes discontinuities at the connectors. First, the impulse 

response was evaluated using the IDFT of the scattering parameter 21s  (involving frequency samples up to 

about 3 GHz), followed by a convolution to obtain the step response. Even after the convolution (which 

introduces smoothing), oscillations due to the temporal leakage persist in the response (Fig. 6b). The period 

of the oscillations equals twice the time step used in computations. The oscillations are clearly visible 

before the propagated step occurs. Thereafter, they are blended with oscillations due to multiple reflections 

on the link. 
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Fig. 6.  (a) Step response of a fast digital-signal link and (b) zoom-in showing ringing due to temporal 

leakage. 

 

By the above examples, we have demonstrated that the temporal leakage appears in results of 

numerical simulations and in measurements using vector network analyzers (which is true both if the 

analyzer has a built-in time-domain option and if the IDFT of the scattering parameters is performed 

externally). 

The effects of the temporal leakage are artifacts in the time-domain response, which occur around 

fast transitions of the response. The artifacts are quasi-oscillatory, their period equals twice the time step, 
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and their amplitudes decay slowly away from the transitions. The oscillations occur not only after a 

transition, but also prior to it, so that an apparently non-causal response of a causal system is obtained.  

In the worst-case scenario, the maximal effect of the temporal leakage can be as high as 21% of the 

impulse response (Fig. 1) and 14% of the step response or the pulse response (Fig. 3) for low-loss wideband 

systems (such as a simple transmission line). In other practical cases, however, the effect of the temporal 

leakage is usually smaller (Figs. 5 and 6), depending on the bandwidth of the system and the spectrum of 

the time-domain excitation. 

The temporal leakage is less pronounced in systems with dispersion (e.g., a lossy transmission line) 

because sharp transitions cannot occur in such cases. Furthermore, the temporal leakage can be kept low by 

shaping the excitation functions appropriately, e.g., by applying a Gaussian pulse, which is often used to 

find figures of merit for time-domain radiators [19, 20]. In such cases, the amplitudes of the oscillations due 

to the temporal leakage are on the order of a few percent of the actual response or even less, so that the 

temporal leakage is often blended with oscillations due to other causes. Note, however, that in some cases 

the impulse response is indispensable (e.g., when evaluating responses by convolution and when modeling 

nonlinear systems [21]), when the response to Dirac’s delta-function cannot be replaced by the response to 

the Gaussian pulse. 

The temporal leakage can be practically eliminated in a system whose response is affected by a 

single physical time delay (e.g., a single-path transmission between two matched antennas). In such a case, 

the number of frequencies and/or the frequency step at which the response is measured or computed may be 

changed with the aim to make this delay equal to an integer multiple of the time step. For example, we can 

freeze the frequency step and change the upper frequency used in the computations by changing the total 

number of samples. A peculiarity of this procedure is that the temporal leakage will periodically decrease 

and increase as the number of samples is changed. However, in the general case, i.e., when the system is 

characterized by two or more non-commensurate time delays (e.g., a multipath transmission between two 

antennas or a microwave circuit with several reflection points), the temporal leakage will always be present. 

5. Conclusions 

This paper explained and demonstrated the temporal leakage. First, we mathematically explained why 

the temporal leakage occurs. We also showed that when applying the discrete Fourier transform, an 

apparently noncausal response can be obtained in the time domain, in spite of careful modeling in the 

frequency domain. Finally, we presented some typical cases where the temporal leakage occurs in the 

electromagnetic analysis as well as in measurements. 
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Appendix 

We derive here equation (11). We start from (10) and sum the geometric series as 
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Finally, using the trigonometric identities 
2

cos2cos1 2 πα=πα+ N
N  and 

παπα−παπα=πα






 − sin
2

coscos
2

sin1
2

sin
NNN

, equation (11) is obtained. 



> < 

 

20 

 

Antonije R. Djordjević was born in Belgrade, Serbia, on April 28, 1952. He received the B.Sc., M.Sc., 

and Ph.D. degrees from the School of Electrical Engineering, University of Belgrade, in 1975, 1977, and 

1979, respectively. In 1975, he joined the School of Electrical Engineering, University of Belgrade, as a 

Teaching Assistant. He was promoted to an Assistant Professor, Associate Professor, and Professor, in 

1982, 1988, and 1993, respectively. In 1983, he was a Visiting Associate Professor at Rochester Institute of 

Technology, Rochester, NY. Since 1992, he has been an Adjunct Scholar with Syracuse University, 

Syracuse, NY. In 1997, he became a Corresponding Member of the Serbian Academy of Sciences and Arts, 

and he became a full member in 2006. His main area of interest is numerical electromagnetics, in particular 

applied to fast digital signal interconnects, wire and surface antennas, microwave passive circuits, and 

electromagnetic-compatibility problems. 

 

 

Dejan V. Tošić was born in Belgrade, Serbia, in 1957. He received the B.Sc. (1980), M.Sc. (1986), and 

Ph.D. (1996) degrees from the School of Electrical Engineering, University of Belgrade, Serbia. He is 

currently a Full Professor with the School of Electrical Engineering, University of Belgrade. He is a 

coauthor of the book Filter Design for Signal Processing Using MATLAB and Mathematica (Prentice-Hall, 

2001, translated in Chinese by PHEI, Beijing, China, 2004), a coauthor of the book WIPL-D Microwave: 

Circuit and 3D EM Simulation for RF & Microwave Applications (Artech House, 2005), and a coauthor of 

SchematicSolver, a software package for symbolic and numeric analysis, processing, and design of analog 

and digital systems (http://www.wolfram.com/products/applications/schematicsolver/). His research 

interests include symbolic computation and signal processing, RF and microwave filter design, and design 

of passive microwave circuits. 

 



> < 

 

21 

 

Alenka G. Zajić (S'99-M'08) received her B.Sc. and M.Sc. degrees from the School of Electrical 

Engineering, University of Belgrade, in 2001 and 2003, respectively. She received her Ph.D. degree in 

Electrical and Computer Engineering from the Georgia Institute of Technology in 2008. In 2010, she joined 

the School of Computer Science, Georgia Institute of Technology, where is Visiting Assistant Professor. 

Her research interests are in wireless communications and applied electromagnetics. Dr. Zajić received the 

Best Paper Award at ICT 2008, the Best Student Paper Award at WCNC 2007, and was also the recipient 

of the Dan Noble Fellowship in 2004, awarded by Motorola Inc. and IEEE Vehicular Technology Society 

for quality impact in the area of vehicular technology. 

 

 

Marija M. Nikolić received the B.Sc., M.Sc., and Ph.D. degrees from University of Belgrade in 2000, 

2003, and 2007, respectively. In 2001, she joined the School of Electrical Engineering, University of 

Belgrade as a Teaching Assistant. In 2008 she was promoted to an Assistant Professor. In 2011, she 

obtained the Ph.D. degree in electrical engineering from Washington University in St. Louis, USA. She is 

interested in inverse scattering, array processing, and antenna analysis and design. 

 

 

Dragan I. Olćan (S'05-M'09) is an Assistant Professor at the School of Electrical Engineering, 

University of Belgrade, Serbia, where he received his B.Sc., M.Sc., and Ph.D. degrees in 2001, 2004, and 

2008, respectively. He is a coauthor of two commercial electromagnetic software codes, five journal papers, 



> < 

 

22 

about forty conference papers, and four university textbooks. His main research interests are: diakoptic 

approach to numerical electromagnetic analysis, optimization algorithms applied to electromagnetic design, 

time-domain electromagnetic analysis, and applied electromagnetics. 

 

 

Izabela D. Jovanović was born in Belgrade, Serbia, in 1972. She received her B.Sc. and M.Sc. degrees 

from the School of Electrical Engineering, University of Belgrade, in 1998 and 2010, respectively. From 

1998 until 2004, she worked as R&D engineer at the Institute for Microwave Techniques and Electronics 

(IMTEL) in Belgrade. Since 2004, she has been with “Telekom Srbija” in Belgrade as leading engineer. 


