Čas 5: 3D-EM modelovanje dielektričnih struktura.

Definicija domena složenih (dielektrično-metalnih) struktura:

Domen predstavlja skup objekata sačinjenih od istog materijala. Električne osobine ovih materijala karakterišu se sledećim parametrima:

- Kompleksna relativna permitivnost $\underline{\varepsilon}_{r} = \varepsilon_{re} + j\varepsilon_{im}$.
- Kompleksna relativna permeabilnost $\mu_r = \mu_{re} + j\mu_{im}$.
- Električna provodnost σ (izražena u S/m).

Posebno u WIPL-D *software-*u:

- Nulti (0-ti) domen predstavlja skup objekata sačinjenih od savršenog električnog provodnika (PEC-a, $\sigma \rightarrow \infty$).
- Prvi (1-vi) domen predstavlja spoljašnji prostor ispunjen vazduhom (vakuum).
- Granične površi domena definisane su pravo-okrnjenim konusima i bilinearnim površinama.

Napomena: Osim u posebnim situacijama, ne preporučuje se menjanje električnih parametara prvog domena.

Žica predstavlja graničnu površ (u obliku pravo-okrnjenog konusa) između proizvoljnog domena (numerisanog sa 1 ili više) i domena 0 (metala). Drugim rečima, žica sadrži domen 0 koji ispunjava njenu unutrašnjost i predstavlja metalnu žicu koja je uronjena u proizvoljni nemetalni domen. Žica ne može biti postavljena duž dodirne površi dva domena.

Ploče predstavljaju graničnu površ (u obliku bilinearnih četvorouglova) između dva proizvoljna domena. Predstavimo domensku specifikaciju ploče parom (i, j), gde su i i j redni brojevi domena:

- (i,0), gde je i > 0 Ploča predstavlja deo granične površi zatvorenog električno savršeno provodnog metalnog tela, ili deo infinitezimalno tanke površi električno savršeno provodnog metalnog otvorenog tela, uronjenog u domen *i*.
- (i, j), gde je i, j > 0 Ploča predstavlja deo granične površi između dva dielektrika, tj. između domena i i j.
- (-i,-j), gde je i, j > 0 Ploča predstavlja deo infinitezimalno tanke električno savršeno provodne metalne površi između dva dielektrika, tj. između domena i i j.

P01.(a) Projektovati polutalasni dipol na centralnoj učestanosti $f_0 = 2,4$ GHz. Na centralnoj učestanosti poluprečnik žice je $R_{\text{wire}} = 0,001\lambda_0$, dok je dužina kraka polutalasnog dipola $H_{\text{arm}} = 0,25\lambda_0$, gde λ_0 predstavlja talasnu dužinu u vakuumu. Zatim optimizovati dužinu kraka dipola kako bi antena bila najbolje moguće prilagođena na centralnoj učestanosti f_0 . Rezultat simulacije (parametar s_{11}) prikazati u opsegu učestanosti od 1GHz do 4GHz u 31-oj tački.

Slika 1(a).

Parametar s_{11} (pre optimizacije dužine kraka) prikazan je na slici 1(b).

Slika 1(b).

Sa slike 1(b) vidi se da je polutalasni dipol najbolje prilagođen na učestanosti 2,27 GHz.

Parametar s_{11} (nakon optimizacije dužine kraka dipola) prikazan je na slici 1(c).

Slika 1(c).

Nakon optimizacije dužina kraka dipola H_{arm} se promenila, sa dužine $H_{arm} = 0,25\lambda_0 = 31,25 \text{ mm}$, na dužinu $H_{arm} = 29,63 \text{ mm}$.

(b) Ponoviti prethodni primer sa razlikom što se dipol nalazi u centru sfere poluprečnika $R = \lambda_0 / 4$, koja je sačinjena od dielektrika (bez gubitaka) relativne permitivnosti $\varepsilon_r = 4,2$. Geometrijski sfera je modelovana sa 5 segmenata po četvrtini obima. Ponoviti optimizaciju dužine kraka kako bi antena bila najbolje moguće prilagođena na centralnoj učestanosti $f_0 = 2,4$ GHz. Za početnu dužinu kraka uzeti $H_{arm} = \frac{0,25\lambda_0}{\sqrt{\varepsilon_r}} = 15,25$ mm, gde λ_0 predstavlja talasnu dužinu u vakuumu.

Parametar s_{11} (pre optimizacije dužine kraka) prikazan je na slici 1(e).

Slika 1(e).

Sa slike 1(e) vidi se da je polutalasni dipol u centru dielektrične sfere najbolje prilagođen na učestanosti 2,27 GHz.

Nakon optimizacije dužine kraka parametar s_{11} za slučaj sa i bez dielektrične sfere prikazan je na slici 1(f).

Slika 1(f).

Nakon optimizacije dužina kraka dipola H_{arm} se promenila, sa dužine $H_{arm} = \frac{0.25\lambda_0}{\sqrt{\varepsilon_r}} = 15,25 \text{ mm}$, na dužinu

$H_{\rm arm} = 14,21 \,{\rm mm}$.

Sa slike 1(f) se vidi da je dipol u vakuumu bolje prilagođen u poređenju sa dipolom u centru dielektrične sfere. Sa druge strane dipol u centru dielektrične sfere ima širokopojasnije prilagođenje u poređenju sa dipolom u vakuumu.

Ono što se ne vidi (direktno) sa ovog grafika, a važno je napomenuti.

Umesno ukupne dužine dipola od 59,26 mm (= $2 \cdot 29.63$ mm), postavljanjem antene u centar dielektrične sfere ukupnu dužinu antene smanjujemo na 28,42 mm (= $2 \cdot 14.21$ mm). U eri malih prenosnih uređaja smanjenje ukupne dužine antene je više nego značajno.

Sa grafika za parametar s_{11} dipola u vakuumu (slika 1(f)), jasno se vidi rezonantni karakter dipola. Podešavanjem dužine dipola rezonanciju smo ostvarili na učestanosti $f_0 = 2,4$ GHz. Sa druge strane, vidimo da u slučaju dipola u centru dielektrične sfere, imamo dve rezonantne učestanosti. Jedna, optimizacijom dužine kraka dipola podešena na $f_0 = 2,4$ GHz, potiče od rezonancije dipola. Druga, na oko 3,6 GHz, potiče od sopstvene rezonancije dielektrične sfere. 2D dijagram zračenja antena za slučaj polutalasnog dipola u vakuumu i polutalasnog dipola u centru dielektrične sfere prikazan je na slici 1(g).

Slika 1(g).

Sa slike 1(g) vidimo da dipol u vakuumu ima neznatno veću usmerenost u poređenju sa dipolom u centru dielektrične sfere.

(c) Za slučaj dipola u centru dielektrične sfere jasno se vide tri ravni (geometrijske) simetrije (preciznije dve ravni simetrije i jedna ravan antisimetrije). Korišćenjem ravni simetrije/antisimetrije, problem postaje električno manji. Samim tim ima i manje nepoznatih za proračun i izvršavanje simulacije se ubrzava. Ponoviti primer dipola u centru dielektrične sfere korišćenjem ravni simetrije/antisimetrije. Ponoviti i optimizaciju. Dati uporedni prikaz parametra s_{11} dipola u centru dielektrične sfere nakon optimizacije, za slučaj korišćenja simetrije/antisimetrije i za slučaj bez ravni simetrije/antisimetrije.

Slika 1(h).

Na slici 1(i) dat je uporedni prikaz parametra s_{11} , za slučaj modela dipola u centru dielektrične sfere koji ne koristi ravni simetrije/antisimetrije i za slučaj modela dipola u centru dielektrične sfere koji koristi ravni simetrije/antisimetrije.

Slika 1(i).

Sa slike 1(i) vidimo da se rešenja dosta dobro poklapaju. Mala neslaganja mogu nastati i zbog činjenice da je sfera u modelu pod (b) geometrijski modelovana sa 5 segmenata po četvrtini obima, dok je u modelu pod (c) sfera geometrijski modelovana sa 4 segmenta po četvrtini obima. Kako bi se koristile ravni simetrije/antisimetrije sfera mora biti geometrijski aproksimirana parnim brojem segmenata po četvrtini obima.

Primetiti skraćenje vremena izvršavanja simulacije u slučaju pod (c).

P02. Potrebno je modelovati dipol antenu na centralnoj učestanosti $f_0 = 0.3$ GHz koja je pod pravim uglom jednom svojom polovinom (jedan krak) uronjena u dielektričnu kocku kroz centar gornje stranice. Na centralnoj učestanosti poluprečnik žice je $R_{\text{wire}} = 0.025 \lambda_0$, dok je dužina kraka dipola $H_{\text{arm}} = 0.25 \lambda_0$, gde λ_0 predstavlja talasnu dužinu u vakuumu. Dužina ivice dielektrične kocke je $a = 0.6 \lambda_0$. Kocka je sačinjena od dielektričnog materijala bez gubitaka, relativne permitivnosti $\varepsilon_r = 4$. Rezultat simulacije (parametar s_{11}) prikazati u opsegu učestanosti od 0.1GHz do 0.4GHz u 31-oj tački.

NAPOMENA: Jedna žica može pripadati samo jednom domenu (može biti uronjena samo u jedan domen)! Kada pripadaju različitim domenima dve žice sa zajedničkim čvorom **NISU** automatski električno spojene. Kako bi ih električno povezali, zajednički čvor se mora koristiti za specifikaciju *Juncion*-a.

Slika 2(a).

Na slici 2(b) prikazan je parametar s_{11} u zadatom opsegu učestanosti.

Slika 2(b).

Sa slike 2(b) jasno se vide dve rezonantne učestanosti dipola. Posto se kraci dipola nalaze u sredinama sa različitom dielektričnom konstantom razlikovaće se i talasne dužine duž krakova dipola. Prva rezonantna učestanost na oko 0,2GHz predstavlja rezonantnu učestanost donjeg kraka dipola (koji se nalazi u dielektriku). Druga rezonantna učestanost na oko 0,335GHz predstavlja rezonantnu učestanost gornjeg kraka dipola (koji se nalazi u vakuumu).

Poređenja radi, na slici 2(b) prikazani su i rezultati kada se dužina kraka dipola koji je u dielektriku smanji na polovinu.

Softverski alati za projektovanje antena

P03. Potrebno je projektovati dipol antenu jednim delom pokrivenu dielektričnim omotačem. Pravilnim izborom dimenzija dielektričnog omotača, koeficijent refleksije se može smanjiti i antena učiniti širokopojasnijom u odnosu na standardni dipol. Dužina kraka dipol antene je $H_{\rm arm} = 100 \,\rm mm$, dok je poluprečnik žice od koje je načinjen dipol $R_{\rm wire} = 3 \,\rm mm$. Dielektrični omotač predstavlja valjak čija je polovina visine $H_{\rm cover} = 30 \,\rm mm$, a poluprečnik je $R_{\rm cover} = 15 \,\rm mm$. U poprečnom preseku, valjak je geometrijski aproksimiran pravilnim osmouglom. Materijal od koga je načinjen dielektrični omotač je bez gubitaka, relativne permitivnosti $\varepsilon_{\rm r} = 2$. Izgled modela prikazan je na slici 3(a). Rezultat simulacije, parametar s_{11} [dB], prikazati u opsegu učestanosti od 0,5GHz do 1GHz u 31-oj tački. Rezultate uporediti sa rezultatima simulacije dipola bez dielektričnog omotača dužine kraka $H_{\rm arm}$ i poluprečnika žice $R_{\rm wire}$.

Slika 3(a).

Na slici 3(b) dat je uporedni prikaz parametra s_{11} [dB] za slučaj dipola sa i bez dielektričnog omotača.

Slika 3(b).

Dipol sa dielektričnim omotačem bolje je prilagođen, i to u širem opsegu učestanosti, u odnosu na dipol bez dielektričnog omotača.

Napomena: Konstruisati omotač dielektričnog valjka i pomoću BOR objekta.